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Highlights
The ecological stage of mating inter-
actions has crucial implications for trait
divergence and speciation; the novel
environments created by humans can
undermine the speciation process.

Sexually selected traits and the fitness
benefits of mating interactions are often
finely attuned to the environments in
which they evolved; anthropogenic
change alters signal–receiver dynamics
and mating decisions, thereby often
increasing hybridization.
Anthropogenic change threatens global biodiversity by causing severe ecologi-
cal disturbance and extinction. Here, we consider the effects of anthropogenic
change on one process that generates biodiversity. Sexual selection (a potent
evolutionary force and driver of speciation) is highly sensitive to the environment
and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alter-
ations to sexual display and mate preference can make it harder to distinguish
between conspecific and heterospecific mates or can weaken divergence via
sexual selection, leading to higher rates of hybridization and biodiversity loss.
Occasionally, anthropogenically altered sexual selection can abet diversifica-
tion, but this appears less likely than biodiversity loss. In our rapidly changing
world, a full understanding of sexual selection and speciation requires a global
change perspective.
Hybridization can underminebiodiversity.
Occasionally it can have a creative func-
tion by increasing potentially adaptive
genetic diversity, allowing for adaptive
introgression, or enhancing mating trait
evolution. Yet, these outcomes are un-
certain and may not fully compensate
for biodiversity loss.

We inject a much-needed global change
perspective for understanding sexual
selection as a driver of the speciation
process in a rapidly changing world.
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Bridging the nexus between sexual selection, speciation, and anthropogenic
change
Sexual selection is a powerful evolutionary force widely thought to play an important role in
diversification and speciation [1,2]. Recent theory [3] shows that the ‘ecological stage’ in which
mating competition and mate choice play out can have far-reaching consequences for diver-
gence among populations in signal and preference traits, reproductive isolation, and, therefore,
the possibilities and mechanics of speciation.

Anthropogenic change (see Glossary) affects biodiversity in part through its ecological impacts
but also by altering evolutionary processes that give rise to diversity itself [4–6]. Sexual selection
depends strongly on the environment [4,5], making it a powerful force in generating new species
but rendering it vulnerable to anthropogenic change. We focus here on how anthropogenic alter-
ations to sexual selection could either hinder or promote speciation, and we describe the mech-
anisms by which this might occur (Figure 1). Empirical evidence demonstrates that anthropogenic
change alters sexual selection and that sexual selection influences speciation, yet there are
almost no studies directly connecting these three processes. We argue that understanding
causal pathways linking anthropogenic change to sexual selection and speciation is critical to
predicting the fate of biodiversity in the Anthropocene.

Sexual selection and its environmental dependence
Not only are sexually selected traits evolutionarily labile, their expression is highly sensitive to
conditions in which an individual develops and/or currently lives, thus showing phenotypic
plasticity [7]. Sexual traits are strongly influenced by ecological conditions in part because
mating interactions are altered by ecology [7], which changes trait expression and how selec-
tion acts on sexual traits [3]. Therefore, anthropogenic change is likely to affect both the
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Figure 1. Anthropogenic environmental change can disrupt sexual selection and the speciation process. This
hypothetical example involves two reproductively isolated spider species that have distinct displays and preferences (color
and courtship behavior), which are subject to sexual selection and play an important role in conspecific mate recognition,
thus generating premating reproductive isolation. We illustrate how anthropogenic ecological changes can lead to plastic
changes in the development of display traits, reducing their differentiation between species. This can lead to a breakdown
in conspecific mate recognition, elevating the likelihood of mate acceptance between species, thus increasing
hybridization and ultimately causing genetic evolution. The consequences may enhance or diminish species diversity.
Diversity can be enhanced if hybridization releases genetic variation or leads to adaptive introgression, facilitating
adaptation to novel environments or generating novel sexual selection, thus potentially giving rise to new species (as
shown on the bottom left). Diversity can be diminished if hybridization leads to hybrid swarms and a loss of multiple
original species (as shown on the bottom right).
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Glossary
Anthropogenic change:
environmental change caused by
humans (either directly or indirectly),
including habitat destruction and
modification, pollution, harvesting, and
climate change.
Condition: the pool of metabolic
resources that an individual is able to
accumulate for investment in survival,
reproduction, and trait expression.
Condition-dependent trait: a trait,
such as a costly sexual signal, whose
expression depends on the pool of
resources an individual is able to acquire.
The expression of condition-dependent
traits thus reflects both genetic effects of
resource acquisition ability and plastic
effects of environmental resource
abundance.
Eutrophication: enrichment of water
bodies by excess nutrients leading to
increased amounts of plant and algal
growth that can reduce visibility in the
water column.
Introgression: the transfer of genetic
material from one species into the gene
pool of another mediated by
hybridization and repeated backcrossing
with one of the parent species.
Local adaptation: when populations
are more suited to the particular
ecological conditions of their local
environment than are other populations
from other environments.
Mate quality: the net benefits an
individual can provide to their mate,
including direct benefits (e.g., food,
nesting sites, and territory) that elevate
the mate’s personal fitness and the
genetic benefits it can confer on offspring.
Operational sex ratio (OSR): the ratio
of males to females that are ready to
mate.
Resource acquisition genes: genes
that affect an individual’s capacity to
acquire resources from its environment,
thereby influencing its condition.
Resource allocation genes: genes
that determine the pattern of resource
allocation among different traits and
functions (e.g., strongly vs. weakly
condition-dependent traits).
Sexual conflict: conflict arising from
differences in the evolutionary interests
of males and females, including harm
imposed by one sex on another or when
selection on a locus acts in opposite
ways for males and females.
Signal honesty: signals that reliably
convey information about the signaler to
the receiver.
expression and evolution of sexual traits [8] over ecologically relevant timeframes (Box 1).
Much research on environmental dependence of sexual displays concerns condition-
dependent traits because these are likely to evolve under selection favoring reliable signaling
of the benefits a mate can offer (Box 2).

Preferences for condition-dependent traits can evolve via both direct and indirect selection. Direct
selection occurs when the chooser’s own fitness is enhanced, whereas indirect selection occurs
when offspring fitness is enhanced by alleles inherited from the chosen mate. Traits important
in same-sex contests also evolve heightened condition dependence if increased investment in
formidability or weapon size enhances performance in mating competition [9].

Both direct and indirect benefits of mate choice involve a component of environmental depen-
dence. The direct benefit must elevate fitness in the chooser’s current environment for the
preference to be adaptive. Likewise, an indirect benefit must equip offspring with genes that
elevate fitness in the world in which they develop and live. Therefore, changes in the environment
can potentially erase both kinds of mate choice benefits, but especially indirect benefits due to
their multigenerational nature. This is the case whether the changes are ‘natural’ (e.g., new habitat
or altered predation regimes) or human induced (e.g., climatewarming, urbanization, and agriculture).
Environmental changes might therefore alter the benefits of mate choice by affecting the expression
of sexual signals and also the covariance between the signal and the receiver’s fitness [8]. For
example, a sexual display that signals parasite resistance (e.g., diet-derived carotenoid coloration)
will lose its salience if parasite abundance declines. Consequently, evolutionary models predict
that preference strength would weaken or that preferences would evolve instead for a display that
does indicate benefits [3].

Human activities have altered environments around the globe, and extensive research has
revealed their far-reaching ecological and evolutionary consequences [10,11]. Given how strongly
many aspects of sexual selection depend on the environment, human-induced ecological changes
are likely to affect the evolution of both preferences and displays. In turn, these alterations can affect
the evolution of reproductive isolation between diverging taxa and thus speciation. Yet, many
questions remain unanswered. We develop these ideasmore fully belowwith the aim of promoting
future research.

Impacts of anthropogenic environmental change on sexual selection
Evidence is mounting that anthropogenic change can have substantive consequences for sex-
ual selection [5] (Box 3), especially when displays signal the extent of local adaptation and are
indicators of mate quality and targets of mate choice [3] (Figure 1). For instance, through its
effects on metabolism and behavior, temperature change can directly affect condition as well
as the expression and costs of mating signals in both ectothermic and endothermic species
[12]. For example, the darkness of African lion (Panthera leo) manes indicates male condition
and is known to influence lioness mate choice. However, when ambient temperatures are
high, dark-maned males also suffer higher body temperature, sperm abnormalities, and
lower food intake, potentially increasing the cost of dark manes under anthropogenic climate
change [13].

Sexual trait expression can be reduced or enhanced independently of condition by chemical pol-
lution such as endocrine disruptors. For example, the expression of sexually selected ornaments
and courtship behavior was compromised in male dark-edged splitfin fish (Girardinichthys
multiradiatus) exposed to environmentally realistic concentrations of a common insecticide [14].
Similarly, polychlorinated biphenyls impaired larynx development in African clawed frogs
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Box 1. Timescales. Can anthropogenic environmental changes have both rapid and lasting effects on sexual
selection and speciation processes?

Anthropogenic changes are considered to be major drivers of global ecological change and biodiversity loss and are per-
sistent enough to influence evolutionary processes. Human activities are pervasive and have profoundly affected the en-
vironment over the past several thousand years. Climate warming, pollution, the growth of cities, the spread of
agriculture and invasive species, and exploiting wild populations for food – none of these are going away soon, and their
impacts are broad. For example, researchers have found pollutants in ice cores dating back to pre-Roman times, marking
the intensification of both agriculture [57] and metal production [58,59]. Since the start of the industrial revolution ~250
years ago, the scale and pace of these early environmental changes have further magnified [57,59]. Compounding the
problems of these legacy effects are many new and emerging threats, such as the more than 900 different pharmaceutical
products that have now been detected in aquatic systems worldwide [60]. Despite recent efforts to curb the effects of hu-
man activities on the environment, evidence suggests that the consequences of anthropogenic changes can persist even
when ecosystems are restored. In the context of sexual selection, for example, epigenetic changes to mate preferences in
rats were reported three generations after exposure to endocrine-disrupting pollutants [61]. Such results highlight that an-
thropogenic change need not be permanent to have lasting effects.

Furthermore, evolutionary processes can take place over ecological timescales [62–64], meaning that speciation via sex-
ual selection can occur surprisingly rapidly. Research showed that the reshuffling of standing genetic variation gave rise to
novel plumage coloration in the Iberá seedeater (Sporophila iberaensis), causing premating isolation between them and
the tawny-bellied seedeater (Sporophila hypoxantha) to arise quickly [65]. Importantly, such processes can be affected
by anthropogenic change, such as seen when chemical pollution disturbed olfactory cues important in species recognition
in Mexican swordtails (Xiphophorus malinche and Xiphophorus birchmanni) and was associated with the rapid collapse of
premating barriers. Genetic evidence suggested that hybrids replaced the parental species in as little as 7 years, highlight-
ing the rapid pace at which speciation processes can be disrupted [66] (Figure I).

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Impact of chemical pollution on hybridization between two sympatric swordtail species,
Xiphophorus birchmanni and Xiphophorus malinche. Photo credit: Daniel Lee Powell (X. birchmanni), Juan
Miguel Artigas Azas (X. malinche), and Gaston Jofre Rodriguez (hybrid).
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Sperm competition: the process that
arises when the sperm of two or more
males compete to fertilize the same
eggs.
Transgressive: extreme phenotypes
seen in hybrid populations compared
with those found in the parental species.
(Xenopus laevis), thus affecting their ability to produce advertisement calls [15]. Insecticide expo-
sure also altered cuticular hydrocarbon profiles of leaf beetles (Phaedon cochleariae), disrupting
intersexual chemical communication during mating [16,17]. By contrast, exposure to endocrine
Trends in Ecology & Evolution, July 2024, Vol. 39, No. 7 657
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disruptors caused male European starlings (Sturnus vulgaris) to produce more complex songs
that females preferred [18].

Anthropogenic environmental changes can alter resources, affecting the expression of condition-
dependent traits. For example, male guppies (Poecilia reticulata) from experimental populations
with low food availability reduced courtship display and developed smaller patches of orange or-
namentation [19]. More generally, anthropogenic changes that alter resource availability
(e.g., pollution, urbanization, agriculture, and overfishing) can potentially affect condition-
dependent displays (Box 2).

Environmental disturbances can also influence the opportunity for sexual selection by altering the
magnitude of differences in trait expression between low- and high-condition mates [4]. For ex-
ample, anthropogenic noise has a disproportionate effect on poor-condition European eels
(Anguilla anguilla) [20], and low-condition common mussels (Mytilus edulis) accumulate more
metal toxicants than high-condition conspecifics [21]. Such examples reveal that human-
induced environmental change can enhance quality differences between individuals, which, in
turn, can reinforce signal honesty.

Conversely, anthropogenic change can potentially attenuate signal differences between individ-
uals, leading to a mismatch between condition and indicator traits. Research shows that nutrient
Box 2. How does the environment shape the development of sexual traits?

Costly traits such as sexual signals typically exhibit heightened condition dependence, enabling individuals to optimize in-
vestment in such traits given the quantity of metabolic resources that they can acquire. This pool of metabolic resources,
called condition, is expected to reflect both resource abundance in the developmental environment and the quality of the
individual’s resource acquisition genes. A separate set of resource allocation genes is assumed to regulate relative
allocation to various traits [67,68] (Figure IA). Condition dependence thus involves a kind of plasticity that links trait expres-
sion and evolution to the environment.

Condition is conventionally regarded as a single pool of resources whose size determines the expression of all costly traits.
Variation in environmental factors, such as resource abundance and stress, has therefore been assumed to shift trait ex-
pression along a single axis of condition (Figure IA). However, recent empirical findings suggest instead that trait expres-
sion can be affected differently by environmental versus genetic quality [69–71] and that environmental factors can have
trait-specific effects [72,73]. These findings suggest that condition comprises multiple separate resource pools that regu-
late different traits (i.e., that condition is multidimensional; Figure IB).

In addition to condition-dependent effects outlined above, some anthropogenic factors appear to exert condition-indepen-
dent effects on trait expression (Figure IC). Such plastic effects can involve endocrine-disrupting pollutants that dysregulate
allocation genes in males, thereby altering or feminizing male sexual morphology or behavior [15]. Such substances can also
alter mate preferences by disrupting brain development [74].

The mechanisms of developmental plasticity that link environmental factors to the expression of signals and preferences
could determine how anthropogenic changes might impact signaler–receiver systems. If anthropogenic changes in re-
sources or stress merely shift trait expression along a single ‘condition’ axis, condition-dependent traits could continue
to signal local adaptation as long as signal honesty is maintained. But if changes in environmental factors alter allocation
among traits or dysregulate development in a condition-independent way, then such changes could disrupt existing signals
or even create novel signals that convey different information. Such plastic changes may, in turn, affect the maintenance of
existing species or promote speciation by altering signaler–receiver systems.

More generally, the plasticity of trait development can alter the genetic covariance between phenotype and fitness and
thereby influence the rate and course of genetic evolution. Plasticity can shield alleles from selection, thus slowing the rate
of adaptive evolution. However, this process could also lead to a build-up of cryptic genetic variation that, if later expressed
in a novel environment, might facilitate adaptive evolution. Plasticity is therefore likely to influence or mediate many evolu-
tionary responses to anthropogenic environmental change, a broad topic that we cannot address comprehensively in this
paper. Rather, we focus primarily on one specific role for plasticity, whereby plastic changes in the expression of sexual
traits lead to the disruption of existing signaler–receiver systems and thereby influence sexual coevolution and speciation.
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Figure I. Environment affects sexual trait development. Environmental influences on the development of sexual
display traits (size of a male bird’s red crown and yellow tail), whose expression is affected by the environment in a
plastic manner. Relevant aspects of the environment that influence sexual traits include biotic factors, such as available
resources and parasites, as well as abiotic factors, such as water/soil chemistry and temperature. Some traits are
strongly condition dependent (denoted by thick red and yellow arrows that connect specific environmental factors to
condition and male display traits), while other traits are weakly affected by condition (denoted by light gray arrows).
(A) Condition as a single resource pool, generating a single axis of condition-dependent trait expression. (B) Condition
as a set of multiple resource pools, generating multiple axes of condition-dependent trait expression. (C) Condition-
independent dysregulation of development by anthropogenic factors, such as endocrine-disrupting pollutants (broken
gray lines).
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pollution may allow all potential mates within a population, irrespective of genetic quality, to gain
access to formerly limited resources, reducing variation among individuals in condition-
dependent displays, decreasing signal honesty, and relaxing sexual selection [22].

Apart from effects on display traits, anthropogenic change can also alter sexual selection by
changing mate preferences, including through direct effects on mate choice. For example, female
guppies exposed to an endocrine-disrupting pollutant were less sexually responsive and less
choosy than unexposed females [23]. This was exacerbated because pollutant-exposed males
increased their sneak copulations, further bypassing female mate choice [24]. Environmental
changes can also affect mate choice indirectly by undermining the capacity to properly evaluate
and discriminate between potential suitors. For instance, female preference for high-quality male
songs in field crickets (Gryllus bimaculatus) was disrupted by anthropogenic noise [25]. More-
over, disturbances that undermine the link between signal value and signaler quality can poten-
tially reduce the benefit of preference for indicator traits or increase the cost. This could reduce
variance in mating success within a sex irrespective of quality, as exemplified by threespine stick-
lebacks (Gasterosteus aculeatus) in response to human-induced eutrophication [26]. This, in
Trends in Ecology & Evolution, July 2024, Vol. 39, No. 7 659
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Box 3. Anthropogenic effects on other aspects of sexual selection

While we have primarily focused on how anthropogenic change might influence mating displays and mate choice, human-
induced environmental change can affect the strength and direction of sexual selection through other pathways, with
potential consequences for speciation. For instance, many anthropogenic changes can affect survival both directly
(e.g., overfishing) and indirectly (e.g., habitat loss) [75,76], thereby altering the density and distribution of individuals within
populations. These effects likely change mate encounter rates and influence mate competition, thus altering mating
systems and the strength of sexual selection [77].

Anthropogenic change can also influence sexual selection by changing the operational sex ratio (OSR). For example,
OSR can be altered when anthropogenic changes have sex-specific effects on organismal survival [78,79]. Global
warming has also been shown to alter OSR in species with temperature-dependent sex determination [80]. Moreover, en-
docrine-disrupting pollutants are known to affect sexual development in multiple taxa [81,82], highlighting the potential for
these chemicals to influence OSR and the opportunity for sexual selection in wild populations.

Anthropogenic change could also alter mating systems via effects on male–male competition [77]. Indeed, exposure to an
androgenic steroid pollutant resulted in increased aggression and male–male competition in guppies [83]. Furthermore,
climate change has altered the costs and benefits of competition in male Californian sea lions (Zalophus californianus).
Typically, male sea lions monopolize mating opportunities by defending a breeding territory and resident females from rival
males. However, high temperatures induce males to spend more time in the water to keep cool, reducing the ability
of dominant individuals to defend their territories, likely resulting in a more equal distribution of mating success among
males [84].

Sexual selection generated by sperm competition and fertilization dynamics might be especially vulnerable to anthropogenic
disturbance. Sperm production and quality are sensitive to temperature as well as nutrition, pollutants, and other environmental
factors [85–87]. Moreover, some of these factors could induce transgenerational effects on male fertility [88].

Anthropogenic change could also alter the nature and intensity of sexual conflict [89,90]. Stressful environmental condi-
tions, such as those caused by climate change, tend to weaken sexually antagonistic selection in natural populations [91].
Likewise, experimental studies on Drosophila melanogaster suggest that high ambient temperatures reduce the costs to
females of male harm associated with male-biased OSR and polyandry [12,92]. Theory suggests that such changes in
sexual conflict intensity could either promote or impede diversification and speciation [93–95], warranting further work
on these questions.

Trends in Ecology & Evolution
turn, may also increase the utility of other cues if they improve mate quality assessment under the
altered conditions.

A recentmeta-analysis supported these ideas by finding that anthropogenic change reduced var-
iance in relative fitness and the opportunity for selection, lowering overall selection strength [27].
Anthropogenic effects on mating traits can instead be amplified by demographic changes asso-
ciated with human activities, such as in small or fragmented populations [28]. The pervasiveness
and rate of human impacts may cause extensive changes to sexual selection, many of which
probably remain to be discovered. Such alterations could have important consequences for
population fitness and the ability to adapt to the changing world [29] as well as the process of
speciation, as we show in the next section.

Consequences for speciation
Eroding diversity
Anthropogenic changes to sexual selection can undermine recognition of conspecific mates,
leading to species diversity loss through hybridization [11]. This can occur because human-
altered sexual selection may reduce differentiation or detectability of differences in display traits
among closely related species, similar to reduced display variation among high- and low-
condition mates. Hampered capacity to assess displays would make it harder to distinguish
conspecific and heterospecific mates [30,31]. Furthermore, anthropogenic changes that directly
alter mate preferences are also likely to hinder mate choice for high-condition conspecific mates,
leading to fitness losses, as shown when field crickets call in noisy urban environments [25].
When display no longer functions to indicate local adaptation, theory predicts a weakening of
660 Trends in Ecology & Evolution, July 2024, Vol. 39, No. 7
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preference divergence [3] and strength. Weakened sexual selection may lead to less elaborate
display and preference. Research shows that reduced choosiness leads to higher acceptance
of heterospecific mates [32]. All of these alterations could increase hybridization, potentially
causing species merging and loss [2,33].

Over generations, preference may evolve to favor instead a different display or sensory modality
that better indicates benefits likely to be obtained from mate choice in disturbed conditions [34].
Moreover, many anthropogenic changes homogenize ecological conditions. This may induce
parallel or convergent evolution if signaling systems of multiple species evolve in response to
the same homogenizing anthropogenic change by the mechanisms we describe. Consequently,
displays and/or preferences may converge, reducing differentiation in mating traits, thus
undermining reproductive isolation and promoting hybridization [2].

In a classic example of species collapse through hybridization resulting from anthropogenic
change to sexual and natural selection, invasive crayfish altered ecological conditions and mating
interactions between two stickleback species [30,35]. This undermined the strong preferences
females once had for the mating displays of conspecific males [30,31], which initially diverged
due to sexual selection [36]. These changes to sexual selection and ecology led to heightened hy-
bridization and a near-complete merging of the stickleback species [37].

In another example, hybridization between mountain (Poecile gambeli) and black-capped
(Poecile atricapillus) chickadees is elevated in urban areas, and a putative cause is eroded
premating isolation due to altered song frequencies and chorus behavior [38]. Sympatric birds
are in worse condition than birds in allopatric regions [39], and we suggest that worsened condition
could contribute to these mating trait changes and weakened premating isolation. Generally, an-
thropogenic ecological change is both pervasive and rapid (Box 1), and speciation is slow relative
to hybridization; thus, it seems likely that these changes to sexual selection will erode species diver-
sity.

Maintaining or enhancing diversity?
Anthropogenic change may also have positive consequences for speciation under certain
conditions. While these processes are likely slower and more uncertain than the often rapid
and well-documented loss of species diversity caused by anthropogenic change, we speculate
about possible diversity-enhancing outcomes here. Changes in sexual signals or preferences
could lead to novel evolutionary outcomes, and hybridization could generate new, distinctive
populations. Moreover, mechanisms like condition dependence may, under certain circum-
stances, work even as the genetic and environmental basis of fitness shifts (see Figure IA in
Box 2). The complex interactions between ecological conditions, signaling, and the fitness
consequences of mate choice could generate a rich diversity of behaviors, signaling strategies,
and mating outcomes.

Mating trait differentiation in novel environments?
Mating traits can adapt rapidly to novel environments. Multiple studies from urban environ-
ments document differentiation in display and/or preference between urban and rural popula-
tions, despite the challenges urbanization imposes for organismal adaptation [40,41]. For
example, freed partly from the pressures of predation and parasitism in forested habitats,
urban-dwelling male Túngara frogs (Physalaemus pustulosus) produce more attractive mating
calls in urban environments while retaining plasticity to produce attractive calls in forested
areas, thus giving them a mating advantage over forest-dwelling frogs in both environments
[42].
Trends in Ecology & Evolution, July 2024, Vol. 39, No. 7 661
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Differentiation in mating traits can be correlated with and sometimes facilitate adaptation. For
example, in both urban and rural populations of great tits (Parus major), the width of a male’s
black ‘tie’ indicates both his boldness and survival chances in his respective environment [43].
Divergence of mating traits in distinct environments could actually promote population differenti-
ation. For example, human disturbance of little greenbul (Andropadus virens) rainforest habitat
caused song divergence among habitats that differ in the level of human disturbance [44,45].
Observed song divergence correlates to genetic differentiation among forested and disturbed
populations [46]. In the long term, such divergence could enhance the chances of speciation
between diverging populations.

Creative hybridization?
Changes to sexual selection can alter recognition of conspecific mates, thereby altering the inci-
dence of hybridization. Although, as already discussed, hybridization arising from anthropogenic
changes to sexual selection and ecology may reduce diversity, it can sometimes contribute to
diversification. This creative force is more likely when human-induced changes generate novel
ecological conditions that might be best met with novel genetic variation, which can be generated
through hybridization. Sexual selection could facilitate these diversity-enhancing consequences
of hybridization in several ways.

The mixing of species’ genomes during hybridization increases genetic variance, including vari-
ance of mating traits. This occurs, in part, by releasing new sources of additive genetic variance
as well as new dominance, epistatic, and transgressive effects, which can far exceed variation
frommutation and migration [47]. Hybrid populations contain genetic variation from two previously
distinct species, including variants favored by selection in at least one of the parent species [48],
providing a large pool of genetic variation on which selection might act to promote adaptation of
ecological or mating traits and/or speciation in novel environments. Hybridization can also produce
novel combinations of the parental species’ genomes [49,50], some of which may be especially fa-
vored in the novel conditions created by anthropogenic change. Conservation biologists recognize
the ‘genetic rescue’ effects of introducing individuals from a different population to breed with
members of a shrinking or isolated population [51]. Similarly, it may be possible for hybridization
to provide genetic variants that lead to adaptation in human-altered environments.

Hybridization can also enable the capture of genes from another species through the introgression
of adaptive alleles from one species into the other. Such introgression can facilitate adaptation
while not eroding species diversity, especially when populations are far from their optimum,
such as occurs in novel environments [48]. In a classic example, Gulf killifish (Fundulus grandis)
adapted to polluted water as a result of hybridizing with congeneric Atlantic killifish
(Fundulus heteroclitus). The resulting introgression of adaptive alleles made Gulf killifish
more tolerant to toxicants [52]. Mate choice plays a key role in reproductive isolation be-
tween these species, and female F. grandis are more permissive, thus facilitating the introgression
of alleles for toxicant resistance [53].

A particularly intriguing example of the pervasive effects anthropogenic change has on sexual
selection and speciation (first eroding species diversity and then restoring it) is lake whitefish
(Coregonus spp.) in prealpine lakes. Whitefish species were lost via hybridization when eutrophica-
tion interfered with the ability to distinguish among species during mate choice and homogenized
formerly distinct niches [54]. Quick action and stringent regulations subsequently restored water
clarity, once again enabling recognition of conspecific displays and partially restoring niche
space. Distinct ecomorphs resembling the original species reappeared [55]. Rediversification
was possible because the hybridization that took place under eutrophication provided a rich
662 Trends in Ecology & Evolution, July 2024, Vol. 39, No. 7
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Outstanding questions
More work remains to fully address
the primary question we have posed:
how do anthropogenic changes alter
the development and expression of
sexual signals and preferences, and
what are the consequences of this for
speciation?

Howdoes the interplay between different
mechanisms of sexual selection or
sensory modalities alter speciation?
Does this vary across taxa?

Can anthropogenic changes induce
nongenetic transgenerational effects
on sexual trait expression in offspring?
What consequences does this have
for diversification?

To what extent are genetic versus
plastic (e.g., learned) mechanisms
involved in population responses to
altered sexual selection?

How do anthropogenic environmental
changes influence the intensity of
sexually antagonistic selection and
sexual conflict, and how do such
changes in sexual conflict affect
biodiversity?

Many relevant studies focus on a subset
of animal taxa, such as fishes, birds,
mammals, and arthropods. How can
the understanding of speciation under
anthropogenic change be broadened
to other taxa that experience sexual
selection? These could include
broadcast spawners in the oceans
(where the interactions are primarily
among gametes) or plants (where
pool of genetic variation on which selection acted when environmental conditions improved
[56]. This example underscores that taking efforts to restore environmental conditions can
re-establish the evolutionary processes that generate new species, allowing species recovery
and even diversification.

Concluding remarks and future directions
The strong environmental dependence of sexual selection and the increasing ecological reach of an-
thropogenic change have the potential, in combination, to induce widespread rapid alterations to the
speciation process. Inmany cases, such changes are likely to erode or slow the generation of species
diversity. Effects that enhance species diversity are also possible but may be less widespread. Local
conservation interventions to rapidly ameliorate negative effects have occasionally proven successful,
and we suggest that greater understanding of how anthropogenic change alters sexual selection
could be valuable for those seeking to prevent biodiversity loss or to promote biodiversity gain.

Of the many potentially informative research directions we foresee (see Outstanding questions),
one important avenue to pursue is how, under various kinds of anthropogenic change, different
mechanisms of sexual selection interact with each other to either promote or impede speciation.
A second avenue to pursue is to understand at the mechanistic level how sexual selection alters
both the incidence of hybridization and whether the outcomes erode or enhance biodiversity.
Considering also that sexual selection can play a powerful role in facilitating adaptation and pop-
ulation persistence, and can be especially effective in novel and rapidly changing environments
[29], these efforts are worthwhile both scientifically and to inform efforts to ameliorate negative
anthropogenic effects on the world’s biodiversity.
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consequences for sexual signals and
preferences, ecological interactions,
and species diversity? For example,
the invasion of parasitoids that find
hosts using acoustic signals can have
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cally communicating insects and their
diversification.

Anthropogenic environmental change
is occurring at such scale and with
such speed that it sets up multiple
opportunities for quasiexperimental
testing. How can we leverage this to
test both detailed mechanisms and
large-scale theoretic predictions
about the interactions between sexual
selection and speciation?
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