Comparing ageing and the effects of diet supplementation in wild vs. captive antler flies, Protopiophila litigata

Brian S. Mautz1 | Nicolas O. Rode1 | Russell Bonduriansky2 | Howard D. Rundle1

1Department of Biology, University of Ottawa, Ottawa, ON, Canada
2Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia

Correspondence
Brian S. Mautz
Email: brian.mautz@gmail.com

Present address
Brian S. Mautz, Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
Nicolas O. Rode, CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France

Funding information
Bettencourt Schueller Foundation; Australian Research Council; Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs program

Handling Editor: Jean-Michel Gaillard

Abstract
1. Few studies have simultaneously compared ageing within genetically similar populations in both laboratory and natural environments. Such comparisons are important for interpreting laboratory studies, because factors such as diet could affect ageing in environment-dependent ways.
2. Using a natural population of antler flies (Protopiophila litigata), we conducted separate factorial experiments in 2012 and 2013 that compared age-specific male survival and mating success in laboratory cages versus a natural field environment while supplementing their diets with protein or sugar.
3. We found consistent and substantial increases in both survival and mating rates in the laboratory compared to the field, but remarkably, despite these large differences actuarial ageing was only higher in the laboratory than in the field in 2012 and similar in the two environments in 2013. In both years, there was no difference between environments in reproductive ageing.
4. We found that males fed protein had a higher mortality rate than males fed sugar (strong and low support in 2012 and 2013, respectively).
5. In contrast, diet did not strongly impact average mating rates, actuarial ageing or reproductive ageing in either experiment.
6. Our results provide the first evidence that the negative effect of protein on life span reported in many laboratory studies can also occur in wild populations, although perhaps less consistently. They also highlight how laboratory environments can influence life-history traits and suggest caution when extrapolating from the laboratory to the field.

KEYWORDS
actuarial senescence, demographic ageing, diet variation, laboratory–field comparisons, life span, macronutrients, mating rate, reproductive senescence

1 | INTRODUCTION

Evolutionary studies often rest on the fundamental assumption that responses in the laboratory are qualitatively similar to those that would be seen in the field (Briga & Verhulst, 2015; Matos, Rego, Levy, Teotónio, & Rose, 2000; Partridge & Gems, 2007; Sgrò & Partridge, 2001). This assumption can be problematic for life-history traits such as ageing, a highly plastic trait that could be strongly affected by artificial laboratory environments. Ageing evolves because natural selection is generally weaker at later ages than at early ages (Hamilton, 1966; Kirkwood, 1977; Kirkwood & Rose, 1991). This allows the accumulation of late-acting deleterious mutations and favours alleles
that increase early-life performance even at the cost of late-life survival and reproduction (Medawar, 1952; Williams, 1957). Ageing is a central topic of evolutionary research because it can have important evolutionary and demographic consequences (Charlesworth, 1994; Finch, Pike, & Witten, 1990). In addition, ageing can increase inbreeding depression and alter genetic variance with age (Charlesworth & Hughes, 1996; Escobar, Jarne, Charmantier, & David, 2008). Much of our knowledge of ageing comes from laboratory experiments, so it is important to understand to what extent inferences from laboratory studies can be generalized to natural populations (Kawasaki, Brassil, Brooks, & Bonduriansky, 2008; Reichard, 2016).

Ageing (senescence) is the age-related decline in an individual’s physiological function that results in increased mortality risk (frailty) and decreased reproductive rate, although the physiological changes that underlie ageing are often unknown (Medvedev, 1990). Changes in frailty are typically estimated at the population level as the rate of increase in mean mortality rate with age (“actuarial ageing”, Ricklefs, 2008) and the decline in reproductive output (“reproductive ageing”), although the latter can also be measured at the individual level. Here, in-line with other evolutionary studies (Charlesworth, 1994; Finch et al., 1990), we focus on these population-level, statistical measures of both actuarial and reproductive ageing and refer to them collectively as “ageing”.

Several factors complicate our understanding of ageing in laboratory versus field settings. First, there are substantial taxonomic and methodological biases in studies of ageing. Most information on ageing in natural populations comes from long-lived vertebrates (Nussey, Froy, Lemaitre, Gaillard, & Austad, 2013), while empirical research in the laboratory is dominated by short-lived model invertebrates (Gems & Partridge, 2013; Kirkwood & Austad, 2000). As such, we know much less about ageing in short-lived wild organisms, particularly insects (although see Bonduriansky & Brassil, 2002; Carroll & Sherratt, 2017; Kawasaki et al., 2008; Ryan, Ben-Horin, & Johnson, 2015; Sherratt et al., 2010; Zajitschek, Brassil, & Bonduriansky, 2009). Furthermore, the considerable difference in life histories between the model organisms used in laboratory versus field research complicates extrapolation, and manipulative studies of factors that influence ageing in the field are rare (Nussey et al., 2013; Roach & Carey, 2014).

Second, populations studied in the laboratory are often genetically different from their counterparts in the field due to genetic drift or adaptation to laboratory conditions (Matos & Avelar, 2001), potentially resulting in differences in ageing (Kenyon, 2005; Kirkwood & Austad, 2000). Third, ageing is highly plastic. Evidence for environment-dependent ageing comes from manipulations of social environment (Adler & Bonduriansky, 2011), reproductive investment (e.g. Tatar, Carey, & Vaupel, 1993) and nutrient composition of juvenile (Hooper, Spagouloulou, Wylde, Maklakov, & Bonduriansky, 2017; Runagall-McNaull, Bonduriansky, & Crean, 2015) and adult (e.g. Gems & Partridge, 2013; Lee, Hwang, Arta, Jeong, & Lee, 2015) diets. These studies suggest that differences between environments could substantially alter patterns and mechanisms of ageing (Briga & Verhulst, 2015; Van Voorhies, Fuchs, & Thomas, 2005). Genotypes can also vary in their response to the environment or other factors such as diet (i.e. genotype × environment interactions; Liao, Rikke, Johnson, Diaz, & Nelson, 2010; Vieira et al., 2000).

A few studies have compared actuarial ageing under laboratory versus natural conditions. These typically show that mean life span is extended, and actuarial ageing is slowed, in captive environments (insects: Kawasaki et al., 2008; Ryan et al., 2015; vertebrates: Bronikowski et al., 2002; Hämäläinen et al., 2014; Ricklefs, 2000; Tidière et al., 2016; plants, Roach, 2001; but see Molleman, Zwaan, Brakefield, & Carey, 2007 for an exception). Comparisons of captive versus wild populations of ruminants reveal that captivity can influence ageing and implicate dietary differences as a factor underlying observed patterns (Lemaitre, Gaillard, Lackey, Clauss, & Müller, 2013; Müller, Gaillard, Bingaman Lackey, Hatt, & Clauss, 2010). By contrast, to our knowledge, only one review has compared the decline in mating rate with age (i.e. reproductive ageing) between the laboratory and field: Atsalis and Videan (2009) concluded that reproduction declined earlier and faster in captive than in wild chimpanzees. With the exception of Kawasaki et al. (2008), all of these studies compared genetically distinct cohorts in the laboratory and field, meaning that differences in ageing cannot be unequivocally attributed to environmental effects. Because very few studies have investigated ageing and other life-history traits simultaneously and experimentally in genetically similar populations in the laboratory and field, the extent to which patterns of ageing in the laboratory are representative of those in nature is unclear. This limits our understanding of the mechanisms, environment-dependence and fitness consequences of both longevity and ageing.

The lack of experimental field studies is especially problematic for research on the effects of diet on ageing. Dietary nutrients are well known to affect life span and ageing (Gems & Partridge, 2013), and the ratio of macronutrients (protein:carbohydrate) is suggested as a key factor shaping mortality and reproductive patterns in animals (Moatt et al., 2019; Simpson, Le Couteur, & Raubenheimer, 2015). The effects of diet on ageing could interact with other environmental parameters that differ between the laboratory and field (Lemaitre et al., 2013; Müller et al., 2010). For example, diet can affect condition and influence behaviour (Lihouere et al., 2015), including sexual signalling (Hunt et al., 2004; Maklakov et al., 2009) and mating (Blay & Yural, 1997). If behavioural differences alter the risk of environmentally driven mortality, or “wear-and-tear” in an environment-dependent way, then diet may affect life span and ageing differently in laboratory and field environments. Additionally, dietary nutrients (especially protein) can influence immune responses, wound healing and thermoregulation (Adler & Bonduriansky, 2014). While protein consumption typically accelerates ageing and shortens life span in captive insects (Fanson, Weldon, Perez-Staples, & Simpson, 2009; Ja et al., 2009; Lee et al., 2008; Maklakov et al., 2008), the role of protein in immunity and wound healing could negate or reverse this effect in natural environments (Adler & Bonduriansky, 2014).

The antler fly (Protopiophila litigata) uses discarded cervid antlers as substrate for mating, egg-laying and larval feeding. Median
life span in the wild is six days (Bonduriansky & Brassil, 2002), and adult males exhibit a remarkable site fidelity, typically returning to the same antler daily to compete for mates near oviposition sites on the antler surface (Bonduriansky & Brassil, 2005). This site fidelity makes it possible to acquire high-quality longitudinal data and conduct experiments in the field. Previous research provided the first compelling evidence of senescence in a wild insect (Bonduriansky & Brassil, 2002). Antler flies therefore offer unique opportunities to compare life-history patterns in natural versus captive populations.

We carried out the first direct laboratory versus field comparison of both actuarial and reproductive ageing in genetically similar captive and wild cohorts. We also manipulated diet in both environments to compare its effects between the laboratory and field. Since diet cannot be controlled in wild animals, we instead supplemented both captive and wild flies with carbohydrates (sugar) or protein (yeast). Mating rate and presence/absence (survival) were recorded simultaneously in males subjected to these diet treatments both on moose antlers stationed in a natural field environment and in nearby laboratory population cages. Because life-history traits such as life span, reproductive rate and ageing rate are highly plastic, and there are many ways to supplement diet, we carried out this study over two consecutive field seasons using two separate experiments in which diet treatments were applied differently. Our goals were to compare ageing between the laboratory and field and to gain insight into whether diet effects on ageing varied between these environments. As such, consistent findings from both experiments would suggest more robust effects of environment and/or diet, while contrasting patterns between experiments would indicate heterogeneity of effects, the cause(s) of which would require further investigation.

2 Materials and Methods

2.1 Experimental design

Discarded moose antlers were collected near the Wildlife Research Station in Algonquin Provincial Park, Ontario, Canada, in May 2012 and relocated to forested areas at the Station prior to larval emergence. Experiments were performed in the spring and summer of 2012 (8 June – 23 July) and 2013 (10 June – 12 July). In both years, males were captured when they first appeared on an antler. To control for seasonality effects, multiple cohorts were collected over 28 (2012) and 30 (2013) days. Larval development time in antler flies is unknown, but time to emergence ranges between 33 and 65 days under laboratory conditions depending on the food quality. Antler flies pupate in the soil near their natal antler and adults typically return to this antler to breed, so these males were likely newly emerged adults (Bonduriansky & Brooks, 1998). These “focal” males were marked with individual codes on the thoracic notum using enamel paint and photographed from above without anesthesia (Bonduriansky & Brooks, 1997), then randomly assigned to a supplemental diet treatment and environment (laboratory or field). We used two different diet supplementation approaches, one applied during each of the two consecutive field seasons. There are many ways to supplement diet, and we do not know which of these may be the most ecologically relevant, but consistent effects across methods would provide a more robust inference. In addition, preliminary analysis of the data from the first year (2012) suggested weak effects of diet, so we wanted to know whether a longer exposure might produce a stronger response. We recognize that the use of somewhat different diet treatments complicates interpretation of differences in results across years (see Discussion).

In 2012, we used a factorial design involving two diets (plus a water-only control) and two environments (field vs. laboratory). On the day of first capture, males were held individually for 1 hr in a glass vial (95 mm x 22 mm) that contained ad libitum carbohydrates (granulated cane sugar in water), protein (deactivated dried Torula yeast in water) or just water. After this diet application, focal males were either released near an antler outdoors (field) or placed into a population cage indoors (laboratory). Males were re-treated for one hour every third day in the laboratory and every third day (or at the first opportunity thereafter) after being recaptured in the field, and subsequently were immediately released at the antler or cage from which they were taken. In 2013, we used an alternative factorial design involving the same two environments (field vs. laboratory), two of the same diets (carbohydrate vs. protein), but with the diets provided in a single two days of exposure after initial capture. Water was provided ad libitum in both sugar and protein diet treatments as in 2012, but there was no water-only control (as there were tighter logistical and time constraints).

2.2 General environmental conditions

In the field, antlers were situated on 0.8 m tall wooden stands located 15-100 m apart at the edge of the forest surrounding the research station (in 2012) or in small, shaded clearings within the forest (2013). Average surface area (±SE) of an antler was 678.4 ± 81.5 cm². Antlers were not enclosed or manipulated in any other way, so marked males released at antlers (and unmarked flies of both sexes) could move without constraint, had unrestricted access to their natural diet (when not in a diet treatment), and experienced a natural range of weather conditions, predators (e.g. spiders and predatory insects), parasites (e.g. mites) and fluctuations in numbers and sex ratios.

In the laboratory, focal males were housed in one of several acrylic cages (3581.6 cm²) along with wild-collected females. Each cage contained ~20 flies at an approximate M:F sex ratio of 2:1, with a similar number of males from each diet treatment. To hold density and sex ratio approximately constant, dead flies were replaced with new individually marked focal males, genetically marked non-focal males (when additional focal males were unavailable) or wild-collected females as necessary. Caged flies were protected from predators, interspecific competitors, shielded from wind and rain, but experienced near-natural fluctuations in temperature, humidity and light as cages were housed in an un-insulated cabin. Both years, focal males in the laboratory had continual access to cane sugar, water and protein (via the oviposition substrate). This particular laboratory environment is one
of many that could be used and that the choice of laboratory environment, along with seasonal variation in abiotic conditions, may affect the presence and magnitude of laboratory–field differences.

Each cage or antler was checked six (occasionally 4–5) times per day every two hours from 0900 to 1900. At each observation, we recorded the presence and mating status of focal males, as well as the sex ratio and total number of flies on the antler or in the cage. Mating status was determined by searching for mating pairs following Bonduriansky and Brooks (1998).

In 2012 (2013), we introduced males onto, and subsequently monitored, a total of six (two) antlers in the field and 11 (12) laboratory cages. In 2012, we excluded males from our analysis that were not seen after their initial release at antlers (to exclude handling-induced mortality; Bonduriansky & Brassil, 2005). There was no mortality during the first diet application in 2012, whereas in 2013 there was ~18.9% and 0% mortality for protein versus sugar males, respectively. However, males were randomly assigned to laboratory versus field after the application of the diet treatment, so mortality during diet application could not affect laboratory/field differences in either year, nor could it affect differences among diets in 2012. Nonetheless, differential mortality during diet application may have reduced our power to detect diet effects in 2013 however (see Results and Discussion).

Sample sizes are shown in Table S1. We made a total of 16,737 observations in 2012 (N = 432 males, 38.6 ± 26.1 SD observations/male) and a total of 10,907 observations in 2013 (N = 219 males; 49.8 ± 38.2 observations/male). The total number of flies per cage in the laboratory was similar to the mean number of flies per antler or in the cage. The total number of flies per cage and a total of 10,907 observations in 2013 (Figure S1), but lower than that in 2013 (laboratory: 21.1 ± 3.7 vs. field: 87.1 ± 48.9; Figure S2). The average sex ratio was slightly less male-biased in the laboratory than in the field both in 2012 (0.66 ± 0.02 vs. 0.84 ± 0.03, respectively; Figure S3) and in 2013 (0.67 ± 0.04 vs. 0.73 ± 0.15; Figure S4).

2.3 Statistical analyses

Because diet treatments differed between years, data were analysed separately by year. For each year/experiment, we tested the effects of environment, diet and their interaction on actuarial and reproductive ageing, as well as on average mortality and mating rates using R vs 3.4.4 (R Development Core Team, 2013). Including sex ratio and number of flies did not qualitatively change the results of our model selection (Tables S3–S10). A male’s probability of being sighted on antlers did not decrease with his age so did not inflate our estimates of ageing in the field (Table S11). Models were ranked according to corrected Akaike’s information criterion (AICc; Hurvich & Tsai, 1989), and ΔAICc values for terms of interest were calculated by comparing the best fit models that included versus excluded that term. When the difference in ΔAICc between best competing models was lower than two, we discuss only the simpler model (Burnham & Anderson, 2002).

The effects of environment, diet and their interaction on mean mortality rate were analysed using semi-parametric Cox proportional hazards models (COXME package; Therneau, 2018) and fully parametric survival models (SURVIVAL package; Therneau, 2015). We included potentially confounding covariates in all models either as fixed effects (body size and emergence date) or as random effects (cage/antler identity). Because body size is a strongly condition-dependent trait in antler flies (Oudin, Bonduriansky, & Rundle, 2015), as in many other insects (Blankenhorn, 2000; Cotton, Fowler, & Pomiankowski, 2004), for Cox analyses, we included an interaction between log body size and environment to test for potential differences in condition-dependent mortality between the laboratory and field (effect of emergence date on body size was first removed: Supporting Information Appendix S1). Individuals observed alive on the last day of the experiment were censored (n = 1 field individual in 2012 and n = 17 laboratory individuals in 2013). As detection probability is high in this system, we assumed that other wild individuals died on the day following their last observation (Bonduriansky & Brassil, 2002). For each year separately, we first compared five Cox models (null, environment effect only, diet effect only, additive environment and diet effects, environment × diet interaction). This semi-parametric approach allows testing for the effect of each variable on mortality hazard without defining the underlying hazard function, but cannot be used to test for effects on actuarial ageing rates (Appendix S1). The assumption of proportional hazards was verified for all the effects except that of environment in 2012 (Table S4d).

To investigate effects on actuarial ageing rate, we fit different parametric survival distributions for each year and each environment independently. The two-parameter Weibull and the gamma distributions were best supported based on Kolmogorov–Smirnov goodness-of-fit tests and AICc model selection, while the Gompertz distribution was poorly supported (Delignette-Muller, 2015; Appendix S1, Table S2, Figures S5–S8 for details). We used the two-parameter Weibull over the gamma for the parametric analyses because there is an explicit formula for the Weibull (but not gamma) mortality rate. The Weibull parameter, α, quantifies the increase in mortality with age for a sample of individuals (α = 1 indicates no ageing; α > 1 or <1 denote positive and negative ageing, respectively; Appendix S1).

For each year separately, we compared four different models to test the effects of environment, diet and their interaction on α (null, environment effect only, diet effect only and environment × diet interaction; an additive model cannot be fit with the SURVIVAL package). We controlled for differences in survival independent of ageing by including the interaction between environment and diet on the Weibull scale in all four models (our Cox analyses showed this interaction affected mortality rates in both years; see Results). The 95% confidence interval of each Cox and Weibull parameter was computed with 1,000 simulations using a multivariate normal distribution with the mean equal to the best model estimates and variance–covariance matrix equal to its Hessian matrix (Rode, Charmantier, & Lenormand, 2011). Mortality was high on the day following release, potentially due to handling effects (see Results). This increase was visible in 2012 (Figure 1a) when males were released immediately.
after marking, but not in 2013 (Figure 1b) when they were kept and fed for two days before being released. To verify that our results in 2012 were not influenced by this early-life mortality, we refit the Weibull models after removing the 56 males that were seen on their day of release but never afterwards.

The effects of environment, diet and their interaction on reproductive ageing were analysed using the lme4 package (Bates, Mächler, Bolker, & Walker, 2014). We modelled the mating success of a male, p, as the number of matings observed for that male on a given day divided by the number of observation periods for that day using generalized linear mixed models with a binomial error distribution and a logit link function. We quantified reproductive ageing as the change in mating success with age. For each environment separately, we first determined whether reproductive ageing was better described by linear or quadratic age effects (Appendix S1). We included antler/cage, season and observation day as random effects, as well as individual identity to account for repeated measures and potential differences in reproductive performance between individuals (Ericsson, Wallin, Ball, & Broberg, 2001; Reid, Bignal, Bignal, McCracken, & Monaghan, 2003). We then combined the data from the two environments and tested for differences in reproductive ageing between environments and diets by fitting 18 models with different combinations of environment, diet, age and their interactions, separately by year. The 95% confidence interval of each parameter was computed with 1,000 simulations using the bootMer function (Bates et al., 2014). Finally, we also performed additional tests to investigate potential trade-offs between average mating rate and reproductive ageing, to ensure that our results were not affected by differences in sex ratio and total number of flies (i.e. density) between environments, and to confirm that our estimates of reproductive ageing were not biased by disappearance of low-quality individuals ("selective disappearance") (Ivimey-Cook & Moorad, 2018; van de Pol & Verhulst, 2006; see Appendix S1 for details).

3 | RESULTS

3.1 | Average mortality rate

The median life span of laboratory males was nearly twice that of field males in both 2012 (median life span in days, pooling across diets [95% CI], field: 6 [2–13], laboratory: 11 [2–17.6]) and 2013 (field: 8 [4–16.9], lab: 13 [4–27]). These differences were strongly supported (ΔAICc = 4.94 and 14.03 for Cox models without an environment effect in 2012 and 2013, respectively, Table 1). Mortality rates were
more than 60% lower in the laboratory compared to the field in both years (Figure 1, Table S4a). An additive effect of diet was also present in the best fit Cox model in 2012 and in the second best fit model in 2013 (Table 1). Indeed, alternative models with no diet effect or with an interaction between diet and environment were supported in 2013 (ΔAICc = 0 and ΔAICc = 0.52, respectively, Table 1), but not in 2012 (ΔAICc = 4.99 and ΔAICc = 2.77, respectively, Table 1). In 2012, the best Cox model provided evidence that the protein diet increased mortality in both the laboratory and in the field (sugar- or water-fed males had, respectively, a 25% and 30% reduction in mortality rates compared to protein-fed males, Table S3a). In 2013, the additive Cox model suggested the same pattern (sugar-fed males had an 18% reduction in mortality rates compared to protein-fed males, Table S3a). In 2013, the additive Cox model suggested the same pattern (sugar-fed males had an 18% reduction in mortality rates compared to protein-fed males, Table S3a). In 2013, the additive Cox model suggested the same pattern (sugar-fed males had an 18% reduction in mortality rates compared to protein-fed males, Table S3a). In 2013, the additive Cox model suggested the same pattern (sugar-fed males had an 18% reduction in mortality rates compared to protein-fed males, Table S3a). In 2013, the additive Cox model suggested the same pattern (sugar-fed males had an 18% reduction in mortality rates compared to protein-fed males, Table S3a).

3.2 | Actuarial ageing

Mortality rates increased with age in both years, indicating actuarial ageing (Figure 1, Table 2). The rate with which mortality increased with age was lower in the field than in the laboratory with strong support in 2012 ($\alpha_{\text{field}} = 1.91, \alpha_{\text{laboratory}} = 2.58$, Table S6a; ΔAICc = 10.52 for a model without an environment effect on shape) but not in 2013 ($\alpha = 2.28$; ΔAICc = 0.98 for a model with a higher ageing rate in the field ($\alpha_{\text{field}} = 2.41$) than in the laboratory ($\alpha_{\text{laboratory}} = 2.14$; Table S6a). In 2012, we observed an increased mortality rate on the day following the release of males (Figure 1a; potentially a handling-related effect), but the more rapid senescence observed in the laboratory compared to field remained qualitatively unchanged when males dying on this day were excluded from the analysis (Table S5b). Diet did not affect ageing rates in either year (ΔAICc = 2.58 and 2.17, for a model with a diet effect on the Weibull shape parameter in 2012 and 2013, respectively).

3.3 | Average mating rate and reproductive ageing

Laboratory males had a higher average mating rate compared to field males in both 2012 (average per cent males mating per day, pooling across diets ± SD; field: 5.4% ± 5.0%, laboratory: 20.0% ± 9.6%) and 2013 (field: 9.4% ± 1.2%, laboratory: 14.9% ± 8.0%). Support for these differences between environments was strong in both years (Figure 2; ΔAICc = 42.77 and 11.6 for models lacking an environment effect in 2012 and 2013, respectively; Tables S7 and S9). There was weak support for a higher mating rate of males fed sugar or protein compared to males fed water in 2012 (ΔAICc = 1.89 for a model lacking a diet effect; Tables 3 and Table S8a; Figure 2). Mating rate did not differ between sugar- and protein-fed males in 2013 (ΔAICc = 1.45 for a model with a diet effect; Table 3; no water control treatment in 2013). Long-lived males also had a higher mating rate (positive effect of life span in Table S12c), except in the field in 2013 (negative effect of life span in Table S12c).

After accounting for differences in average mating rate between environment and across diets, mating rate decreased quadratically

Table 1

Results of the AICc model selection for Cox proportional hazards survival models. All models included an interaction between environment and residual log body size and emergence date as fixed effects and antler/cage identity as a random effect.

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Description</th>
<th>Df</th>
<th>Log likelihood</th>
<th>AICc</th>
<th>ΔAICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Environment + diet</td>
<td>7</td>
<td>-2139.09</td>
<td>4292.44</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Environment × diet</td>
<td>9</td>
<td>-2138.39</td>
<td>4295.20</td>
<td>2.77</td>
</tr>
<tr>
<td></td>
<td>Diet only</td>
<td>6</td>
<td>-2142.56</td>
<td>4297.32</td>
<td>4.88</td>
</tr>
<tr>
<td></td>
<td>Environment only</td>
<td>5</td>
<td>-2143.64</td>
<td>4297.42</td>
<td>4.99</td>
</tr>
<tr>
<td></td>
<td>Null model</td>
<td>4</td>
<td>-2147.23</td>
<td>4302.55</td>
<td>10.12</td>
</tr>
<tr>
<td>2013</td>
<td>Environment only</td>
<td>5</td>
<td>-879.86</td>
<td>1770.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Environment + diet</td>
<td>6</td>
<td>-879.01</td>
<td>1770.41</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Environment × diet</td>
<td>7</td>
<td>-878.00</td>
<td>1770.52</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Null model</td>
<td>4</td>
<td>-888.03</td>
<td>1784.24</td>
<td>14.24</td>
</tr>
<tr>
<td></td>
<td>Diet only</td>
<td>5</td>
<td>-887.45</td>
<td>1785.17</td>
<td>15.17</td>
</tr>
</tbody>
</table>

Table 2

Results of AICc model selection for two-parameter Weibull survival models. The second parameter of all Weibull models included the interaction between environment and diet, residual log body size and standardized emergence date as fixed effects and antler/cage identity as a random effect.

<table>
<thead>
<tr>
<th>Shape parameter</th>
<th>Df</th>
<th>Log likelihood</th>
<th>AICc</th>
<th>ΔAICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Environment</td>
<td>11</td>
<td>-1145.54</td>
<td>2313.70</td>
</tr>
<tr>
<td></td>
<td>Environment × diet</td>
<td>15</td>
<td>-1142.56</td>
<td>2316.28</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td>12</td>
<td>-1149.74</td>
<td>2324.22</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>10</td>
<td>-1152.51</td>
<td>2325.54</td>
</tr>
<tr>
<td>2013</td>
<td>-</td>
<td>8</td>
<td>-632.64</td>
<td>1281.96</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
<td>9</td>
<td>-632.04</td>
<td>1282.94</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td>9</td>
<td>-632.63</td>
<td>1284.13</td>
</tr>
<tr>
<td></td>
<td>Environment × diet</td>
<td>11</td>
<td>-631.45</td>
<td>1286.17</td>
</tr>
</tbody>
</table>
with age with strong support in 2012 (ΔAICc = 19.69 for model lacking an age effect; Table S7) and linearly with age with low support in 2013 (ΔAICc = 0.02 for model lacking an age effect; Table 3). Hence, evidence for reproductive ageing was strong in 2012, but weak in 2013 (Figure 2). Accounting for selective disappearance did not change the estimated age effects from the best fit model (Table S12c). Differences in reproductive ageing between environments were weakly supported in 2012 (ΔAICc = 0.55 for a model without an environment × age interaction; Table 3) and unsupported in 2013 (ΔAICc = 2.02 for a model with an environment × age interaction; Table 3, Figure 2). In both years, diet did not affect reproductive ageing and did not interact with environment (Table 3). Finally, males with a higher-than-average mating rate did not exhibit more rapid reproductive senescence (ΔAICc > 1.78 for models that included a correlation between the random intercept and the random age slope of each male, Table S12a).

4 | DISCUSSION

We observed a large difference in median life span between environments (83.3% and 62.5% higher in the laboratory than in the field in 2012 and 2013, respectively) which resulted from mortality rates that were approximately 60% lower in the laboratory than in the field in both years. This is consistent with many (Bronikowski et al., 2002; Carroll & Sherratt, 2017; Hämäläinen et al., 2014; Kawasaki et al., 2008; Ricklefs, 2000; Roach, 2001), but not all (Molleman et al., 2007; Müller et al., 2010) previous studies. Lower mortality in laboratory compared to field environments probably resulted from a more reliable food supply in the laboratory, lower foraging costs (Piper & Partridge, 2007), and from protection from predators, parasites, competitor species and inclement weather. Importantly, the higher mortality that we observed in the field was not due to any single antler (Figure S6), to lower re-sighting rates for older males (see Methods), to age-dependent migration to non-monitored antlers (Table S11), or to mortality during diet application (environments were assigned after diet application). Elevated mortality on the day of release was likely due to handling-induced effects, but could alternatively be the result of frail, low-quality individuals that tend to die early in life.

Differences between environments in actuarial ageing were more complex and varied between years. Males showed faster actuarial ageing in the laboratory relative to the field in 2012. This more rapid actuarial ageing resulted in instantaneous mortality rates converging between environments for old individuals (Figure 1). However, in 2013 (where sample size and therefore statistical power were lower), we observed a weakly supported trend in the opposite direction, with faster actuarial ageing in the field than in the laboratory (Figure 1). Longer life span in both years in the laboratory was therefore not due to a slower rate of ageing in this environment, but
rather resulted from a lower baseline mortality in the laboratory (i.e. lower intercepts in Figure 1). Very few comparisons of ageing rates in wild versus captive insects have been carried out, but patterns vary for those that have. Carroll and Sherratt (2017) found faster actuarial ageing in captive compared to wild butterflies, whereas a study on neriid flies found faster actuarial ageing in wild compared to captive males (Kawasaki et al., 2008). Rapid actuarial ageing in the wild can result from an increase in age-dependent environmentally driven mortality (Kawasaki et al., 2008; Roach, 2001), but this process cannot explain the more rapid ageing that we observed in the laboratory in 2012. Our results could arise from the selective disappearance of low-quality individuals in the field (e.g. due to condition-dependent susceptibility to predation). If low-quality individuals have higher mortality rates on average, this could explain the more rapid actuarial ageing we observed in the laboratory compared to the field. However, contrary to this expectation, average mortality rates in each environment were affected similarly by log body size (used as a proxy for individual quality). However, body size may be a poor indicator of individual condition (Wilder, Raubenheimer, & Simpson, 2015), most notably in the field, and further studies using other proxies for condition (e.g. carbohydrate or fat content; Rode & Morrow, 2009) are needed to test whether condition-dependent environmentally driven mortality results in slower ageing at the population level (Chen & Maklakov, 2012).

In both years, our diet manipulation affected the average mortality rate but not the actuarial ageing rate (i.e. changes in mortality with age). Overall, males fed sugar or water had ~18%–30% lower average mortality rate than those fed protein. Protein:carbohydrate ratio plays an important role in shaping life span and reproduction (Grandison, Piper, & Partridge, 2009), and, consistent with our results, a negative effect of protein consumption on longevity has been observed in multiple laboratory studies of insects (Adler, Cassidy, Fricke, & Bonduriansky, 2013; Fanson et al., 2009; Ja et al., 2009; K. Lee et al., 2008; Maklakov et al., 2008). Our study provides the first evidence that protein consumption can increase mortality rate not only under benign laboratory conditions but also under natural conditions, and thus suggests that this well-known effect is ecologically relevant. Increased protein has also been shown to enhance sexual

Table 3: Results of the AICc model selection for reproductive ageing

<table>
<thead>
<tr>
<th>Year</th>
<th>Effects on senescence</th>
<th>Effects on average mating rate</th>
<th>Df</th>
<th>Log likelihood</th>
<th>AICc</th>
<th>∆AICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Environment × (age + age²)</td>
<td>Environment + Diet</td>
<td>14</td>
<td>-2819.96</td>
<td>5668.07</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Environment × (age + age²)</td>
<td>Environment × Diet</td>
<td>16</td>
<td>-2818.08</td>
<td>5668.35</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Age + age²</td>
<td>Environment + Diet</td>
<td>12</td>
<td>-2822.26</td>
<td>5668.62</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Age + age²</td>
<td>Environment × Diet</td>
<td>14</td>
<td>-2820.34</td>
<td>5668.82</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Environment × (age + age²)</td>
<td>Environment</td>
<td>12</td>
<td>-2822.93</td>
<td>5669.96</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>Age + age²</td>
<td>Environment</td>
<td>10</td>
<td>-2825.04</td>
<td>5670.15</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>Environment × (age + age²) + diet × (age + age²)</td>
<td>Environment + Diet</td>
<td>18</td>
<td>-2817.95</td>
<td>5672.14</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>Environment × (age + age²) + diet × (age + age²)</td>
<td>Environment × Diet</td>
<td>20</td>
<td>-2816.46</td>
<td>5673.22</td>
<td>5.15</td>
</tr>
<tr>
<td></td>
<td>Diet × (age + age²)</td>
<td>Environment</td>
<td>16</td>
<td>-2820.80</td>
<td>5673.78</td>
<td>5.71</td>
</tr>
<tr>
<td></td>
<td>Diet × (age + age²)</td>
<td>Environment × Diet</td>
<td>18</td>
<td>-2819.24</td>
<td>5674.73</td>
<td>6.65</td>
</tr>
<tr>
<td>2013</td>
<td>Age</td>
<td>Environment</td>
<td>9</td>
<td>-1652.01</td>
<td>3322.13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>Environment</td>
<td>8</td>
<td>-1653.04</td>
<td>3322.16</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>Environment + Diet</td>
<td>9</td>
<td>-1652.74</td>
<td>3323.58</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>Environment × age</td>
<td>Environment</td>
<td>10</td>
<td>-1651.79</td>
<td>3323.70</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>Environment × Diet</td>
<td>11</td>
<td>-1651.12</td>
<td>3324.40</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>Environment × Diet</td>
<td>10</td>
<td>-1652.19</td>
<td>3324.51</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>Diet × age</td>
<td>Environment + Diet</td>
<td>11</td>
<td>-1651.34</td>
<td>3324.83</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>Environment × age</td>
<td>Environment + Diet</td>
<td>11</td>
<td>-1651.79</td>
<td>3325.73</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>Diet × age</td>
<td>Environment × Diet</td>
<td>12</td>
<td>-1650.84</td>
<td>3325.87</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>Environment × age</td>
<td>Environment × Diet</td>
<td>12</td>
<td>-1651.12</td>
<td>3326.43</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>Environment × age + diet × age</td>
<td>Environment × Diet</td>
<td>12</td>
<td>-1651.34</td>
<td>3326.86</td>
<td>4.73</td>
</tr>
<tr>
<td></td>
<td>Environment × age + diet × age</td>
<td>Environment × Diet</td>
<td>13</td>
<td>-1650.84</td>
<td>3327.90</td>
<td>5.77</td>
</tr>
</tbody>
</table>
signalling (Hunt et al., 2004) and mating success (Blay & Yuval, 1997; Taylor & Yuval, 1999) in males of some species, which might explain the negative effect of protein consumption on male mortality in our study. However, support for an effect of diet in the field in the 2012 experiment but not in the 2013 experiment suggests that this effect is less consistent under natural conditions than in the laboratory. The effect of diet on average mortality rate is likely to depend both on the age of individuals upon exposure and the duration of this exposure (e.g. Stroustrup et al., 2016), so different results between experiments could reflect differences in our feeding protocol. It is also possible that a negative effect of protein consumption was weaker in 2013 because of substantial mortality of protein-fed males during the two-day diet application, which may have disproportionately eliminated individuals that were most susceptible to protein’s harmful effects prior to release.

Average mating rate was higher in the laboratory compared to the field in both years (a difference of ~14.5% and 5.5% in 2012 and 2013, respectively). In nature, males can only mate when females arrive at an antler and operational sex ratios on antlers are typically strongly male-biased (Bonduriansky & Brooks, 1999). However, differences in mating rate between environments were still strongly supported when differences in sex ratio and fly numbers were accounted for statistically. Antler fly females visit antlers less frequently than males and can fly away to escape male harassment (Bonduriansky & Brooks, 1999), so the constant availability of females in laboratory cages may have contributed to this elevated mating rate in the laboratory. Preventing females from escaping male sexual attention is likely a common feature of laboratory environments and may give males more control over mating, increasing the opportunity for sexual conflict (Yun, Chen, Singh, Agrawal, & Rundle, 2017). This may have important consequences for inferences concerning sexual conflict, and an elevated mating rate in the laboratory may affect other life-history traits. Males with higher mating rates also tended to have longer life spans (except in the field in 2013), suggesting that any trade-off between reproduction and survival may be masked by variation in individual condition.

Consistent with a previous study of antler flies (Bonduriansky & Brassil, 2005), we detected reproductive ageing in both years (although support was weak in 2013 where sample size was smaller). Importantly, selective disappearance of low condition/short-lived males (van de Pol & Verhulst, 2006) did not bias our estimates of reproductive senescence. In addition, evidence for differences in reproductive ageing between environments was weak in 2012 and absent in 2013, suggesting that the substantially higher mating rate in the laboratory did not cause accelerated reproductive ageing, perhaps as a result of greater access to resources. Consistent with this, within environments males with higher mating rates did not have faster declines in mating rate. This apparent absence of a trade-off between mating rate and reproductive ageing both between and within environments contrasts with the only other study that compared patterns of reproductive ageing in captive versus wild chimpanzees (Atsalis & Videan, 2009). In our case, diet also did not affect reproductive ageing in either year, although there was some evidence that males fed sugar or protein mated more frequently than males provided with water only in 2012. Additional data are needed to determine the consistency and generality of these results.

Several of our results differed between our 2012 and 2013 experiments. These differences could be at least partially due to inter-annual variation in environment conditions. However, dietary treatments, sample sizes and the precise location of antlers also changed, potentially contributing to variation in results. Additionally, in 2013 there was elevated mortality on the protein diet during the treatment period before the flies were released. This might affect our ageing estimates, but because flies were split between laboratory and field after application of the diet treatments, it should not impact our analysis of differences between laboratory and field environments. Quantifying ageing in the wild is logistically demanding, particularly in small insects. Our experiment was not designed to quantify inter-annual variation, so between-year differences should be regarded as tentative. Conversely, consistent patterns across our 2012 and 2013 experiments (e.g. higher mating rate and greater longevity in the laboratory vs. field, and actuarial ageing in both environments) can be regarded as especially robust, given that they were maintained despite these differences. Density and sex ratio varied throughout the life of each male and between years, but our results remained qualitatively unchanged when controlling for such variation both between and within environments (Appendix S1). Going forward, multi-season/year longitudinal studies will be important to quantify year-to-year variation and gain insight into the environmental variables that may contribute to it.

In summary, ours is the first study to investigate actuarial and reproductive ageing simultaneously in genetically similar wild and captive cohorts. Our data provide strong evidence that survival and reproduction can differ dramatically between laboratory and natural environments, and more tentative evidence that ageing rate can also differ between environments. We found that laboratory males lived much longer and mated much more often than wild males. We also found that males in the laboratory showed faster actuarial ageing than males in the field (2012; a pattern that contrasts with results of most previous studies), but this was not observed in 2013. Furthermore, we detected an overall higher average mortality rate of males fed protein compared to those fed sugar or water in both years (but with low support in 2013), providing the first evidence that the negative effect of protein on life span reported in many laboratory studies can also occur in wild populations, although perhaps less consistently.

ACKNOWLEDGEMENTS

We are grateful to M. Rivest, K. Henbest and M. Oudin for assistance in data collection and to U. Basellini, S. Cubaynes, C. Jackson, T. Therneau and P. de Villemereuil for statistical advice. We thank two anonymous reviewers and the Editor for their comments on previous versions of the manuscript. B.S.M. and N.O.R. were supported
by a grant from the Canada Research Chairs programme (HDR). Research was funded by the Natural Sciences and Engineering Research Council of Canada (HDR). R.B. was supported by a grant from the Australian Research Council. N.O.R. acknowledges funding from the Bettencourt Schueller Foundation and the CeMEB LabEx/University of Montpellier. The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

B.S.M. designed the project, collected data, assisted in data analysis, and wrote the manuscript. N.O.R. performed data analysis, generated figures and wrote the manuscript. R.B. assisted in project design, data collection and wrote the manuscript. H.D.R. assisted in project design, data collection and wrote the manuscript.

DATA AVAILABILITY STATEMENT

ORCID

Brian S. Mautz https://orcid.org/0000-0003-3870-2932
Nicolas O. Rode https://orcid.org/0000-0002-1121-4202
Russell Bonduriansky https://orcid.org/0000-0002-5786-6951

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.