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abstract: Most research on life span and aging has been based on
captive populations of short-lived animals; however, we know very
little about the expression of these traits in wild populations of such
organisms. Because life span and aging are major components of
fitness, the extent to which the results of many evolutionary studies
in the laboratory can be generalized to natural settings depends on
the degree to which the expression of life span and aging differ in
natural environments versus laboratory environments and whether
such environmental effects interact with phenotypic variation. We
investigated life span and aging in Telostylinus angusticollis in the wild
while simultaneously estimating these parameters under a range of
conditions in a laboratory stock that was recently established from
the same wild population. We found that males live less than one-
fifth as long and age at least twice as rapidly in the wild as do their
captive counterparts. In contrast, we found no evidence of aging in
wild females. These striking sex-specific differences between captive
and wild flies support the emerging view that environment exerts a
profound influence on the expression of life span and aging. These
findings have important implications for evolutionary gerontology
and, more generally, for the interpretation of fitness estimates in
captive populations.
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From the standpoint of evolutionary biology an animal’s ex-

pectation of life in its natural surroundings is much more

significant than the degree of decrepitude to which it may be

nursed in laboratory or zoo. (P. B. Medawar 1946)

Empirical research on life span and aging has largely relied
on captive populations of short-lived animals like Dro-
sophila melanogaster, Caenorhabditis elegans, and mice (see
Rose and Charlesworth 1981; Partridge and Barton 1993a,
1993b; Charlesworth and Hughes 1996; Jucker and Ingram
1997; Partridge and Mangel 1999; Kirkwood and Austad
2000; Hughes et al. 2002). In contrast, we know remark-
ably little about life span and aging of short-lived organ-
isms in their natural environments (see Medawar 1946;
Partridge 1988; Williams et al. 2006). This gap in knowl-
edge is especially problematic because the interpretation
of a wide range of evolutionary studies often rests on the
assumption that laboratory results are at least qualitatively
informative of patterns that occur in wild populations,
where the traits of interest evolved (Harshman and Hoff-
mann 2000). Because life span and aging (i.e., the pattern
of age-related changes in the probability of survival and
reproduction) are major components of fitness, the as-
sumption that laboratory results can be generalized to nat-
ural environments may be violated if life span and aging
differ substantially between natural settings and laboratory
settings. In particular, if environmental effects on the ex-
pression of life span and aging interact with phenotypic
variation (e.g., sex, age cohort, genetic or conditional
morph, etc.), then exposure to laboratory environments
may yield patterns that are qualitatively different from
those occurring in natural environments. Here we provide
evidence of large, sex-dependent differences in life span
and aging between cohorts observed in fully natural en-
vironments versus genetically similar cohorts observed in
laboratory environments. We argue that such effects may
complicate the interpretation of many laboratory studies
and highlight the need for a better understanding of en-
vironmental effects on the expression of life span and
aging.
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Figure 1: Wild female Telostylinus angusticollis marked with an individual
code on the thoracic notum, perched on Acacia longifolia bark.

Currently available evidence yields contradictory clues
about how wild and captive populations differ in aging
rates and life spans. For example, in wild rodents it re-
mains unclear whether aging occurs at all (Slade 1995),
whereas Bonduriansky and Brassil (2002) observed rapid
aging in wild antler flies. Curiously, recent studies based
on common-garden assays have suggested that wild D.
melanogaster and mice have the genetic potential to age
more slowly and to live longer than their laboratory-
adapted counterparts (Sgrò and Partridge 2000; Linnen et
al. 2001; Miller et al. 2002). However, in relation to the
question of how wild organisms and captive organisms
differ in life span and rate of aging, the relevance of these
common-garden studies is unclear because aging and life
span are highly plastic traits. The radically different en-
vironments experienced by wild organisms and captive
organisms could have large effects on the expression of
these traits, and such effects could either negate or amplify
any genetic differences between wild and laboratory-
adapted populations. Genotype # environment interac-
tions for life span have been observed in D. melanogaster
(Vieira et al. 2000; Marden et al. 2003) and C. elegans
(Shook and Johnson 1999; Van Voorhies et al. 2005). Life
span and aging rate are affected by diet in many animals
(Medawar 1946; Nishiyama et al. 1997; Masoro 2005);
even the scent of food affects life span in Drosophila (Libert
et al. 2007). In rats, an enriched environment reduces the
rate of brain aging (Saito et al. 1994; Nakamura et al.
1999). In ungulates, aging rate in wild males appears to
be affected by population density (Mysterud et al. 2001).
Consequently, comparisons of wild and captive popula-
tions must take into account environmental effects on the
expression of aging and life span (Williams et al. 2006).
The few studies that have tested for such effects—in plants,
birds, and baboons—have observed considerable differ-
ences in life span between laboratory and wild populations
(Ricklefs 2000; Roach 2001; Bronikowski et al. 2002).
However, no previous study of any animal species has
compared both life span and aging rate of genetically sim-
ilar populations living in fully natural environments versus
laboratory environments.

Our lack of knowledge about aging and life span in
short-lived organisms in the wild largely reflects technical
impediments. Small animals are difficult to mark, are often
difficult to recapture, and, given their high extrinsic mor-
tality rates, large samples are generally required to detect
aging. Currently available phenotypic indices of aging,
such as age-related changes in pteridine concentrations,
are imprecise and are strongly affected by environmental
factors (Hayes and Wall 1999; Robson et al. 2006). These
impediments can be partly overcome, however, through
the use of an effective individual marking technique (Bon-
duriansky and Brooks 1997; Hagler and Jackson 2001) and

through the choice of model species with a sufficient site
fidelity to yield reasonably high individual resighting rates,
such as insects that form stable mating aggregations (see
Bonduriansky and Brassil 2002, 2005).

We employed a mark-release-resight method to inves-
tigate life span and actuarial aging (i.e., a change in mor-
tality rate with age, henceforth “aging”) in the wild in
Telostylinus angusticollis (Neriidae), a large fly that forms
mating aggregations on damaged tree trunks (Bondurian-
sky 2006, 2007; fig. 1). At the same time, we estimated
life span and aging under a variety of conditions (e.g.,
individual housing vs. grouped housing, same-sex groups
vs. mixed-sex groups) in a laboratory stock that was re-
cently established from the same wild source population.
We also experimentally tested for effects on mortality of
our marking technique as a result of mechanical injury or
paint toxicity. Modeling of mortality rate as a function of
age using maximum likelihood techniques revealed a strik-
ing contrast between wild and captive flies in life span,
rate of aging, and effects of sex.

Methods

Study Animals

We studied a wild population of Telostylinus angusticollis
(Enderlein) in the Fred Hollows Reserve, Sydney, Austra-
lia. The flies formed mixed-sex aggregations on two beetle-
damaged Acacia longifolia trees and could be found spo-
radically on several other trees and a wooden fence nearby.
Telostylinus angusticollis adults fed, mated, and oviposited
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on the A. longifolia trunks, and larvae developed in the
rotting bark. We established a laboratory population from
∼100 individuals collected from this wild population. The
laboratory stock was maintained in four 10-L population
cages with a layer of moist “cocopeat” (Galuku, Sydney)
for two generations prior to this study. Brown sugar and
soy protein were provided as food for adult flies. Cages
were maintained at 26�C, 50% humidity, and a 14L : 10D
cycle and were illuminated using a combination of broad-
spectrum fluorescent and incandescent lights.

Larval medium for oviposition was provided in a 250-
mL container at the bottom of each cage. Larval medium
consisted of 30 mL of blackstrap sugar cane molasses
(Conga Foods, Preston, Victoria, Australia), 30 mL of liq-
uid barley malt (Select Foods, Smithfield, New South
Wales, Australia), and 32 g of soy protein powder
(PharmaCare, Warriewood, New South Wales, Australia)
per liter of dry cocopeat hydrated with 800 mL of purified
water. The mixture was thoroughly homogenized using a
handheld blender and was frozen at �20�C until the day
of use. Every 20 days, each container of oviposition me-
dium was supplemented with approximately 250 mL of
fresh larval medium and transferred to a mesh-covered 2-
L jar. Adults emerging from the 2-L jars were transferred
to population cages.

Laboratory Study

Aging rate in the laboratory was estimated under several
different conditions. Assay A contained 208 flies (102 fe-
males and 106 males) that were maintained individually
in 75-mL cages. Assay B contained 200 flies (98 females
and 102 males) that were maintained in 40 same-sex
groups (20 groups of 4 or 5 females each and 20 groups
of 5 males each) in 250-mL cages. Assay C contained 800
flies that were maintained in 40 same-sex groups of 10
individuals each (20 groups of females and 20 groups of
males), and 40 mixed-sex groups of 10 individuals each
(5 females and 5 females) in 2-L cages (life span could
not be determined for a few individuals; see “Results” for
actual sample sizes). The flies used in these assays were
obtained as newly emerged individuals from the laboratory
stocks. Cages contained a layer of hydrated cocopeat and
small dishes of brown sugar and dry yeast (soy protein in
assay C) for adult food. In assay C, mixed-sex cages also
contained 75-mL jars of oviposition medium that was re-
placed every 2 weeks. All cages were watered regularly to
keep the cocopeat moist. Cages were checked daily for
dead flies.

Field Study

To investigate aging in the wild, we collected 80 females
from the wild population, marked their adult F1 progeny
with individual codes, and released them near the T. an-
gusticollis aggregations at the field site (fig. 1). Adults in
the F1 generation were marked using a modified version
of the technique of Bonduriansky and Brooks (1997). The
marking device consisted of a cylinder and piston con-
structed from a 75-mL specimen container (Sarstedt, Tech-
nology Park, South Australia, Australia). The cylinder was
covered at one end with a 4-mm-grid wire mesh. One fly
at a time was released into the cylinder, and the piston
was inserted and adjusted so as to immobilize the fly with
its thoracic notum protruding through an opening in the
mesh. The device was then placed on the stage of a Leica
MS5 stereoscope and an individual code was applied to
the thoracic notum in white enamel paint (Model Master,
Testor, Rockford, IL) using a brush consisting of a pointed
strip of index card paper with a single short hair glued on
its tip. Individual codes consisted of two-figure combi-
nations of arabic numerals, Latin letters, and Japanese let-
ters. Marked flies were then released near an aggregation
site on damaged A. longifolia trees in the Fred Hollows
Reserve (50% of flies released at each site). In total, 914
flies (424 males and 490 females) were released between
December 27, 2005, and March 27, 2006 (92% of marked
flies were released within 3 days of adult emergence). There
is no evidence that laboratory-reared flies differed from
wild flies in any phenotypic trait, including condition.
Laboratory-reared flies were morphologically indistin-
guishable from wild-caught flies, and a pilot mark-recap-
ture study using wild-caught flies of unknown age pro-
duced similar results (not shown) to the findings reported
here for laboratory-reared flies.

The trunks and major branches of the two A. longifolia
trees where major aggregations occurred were inspected
daily for the presence of marked individuals between De-
cember 27, 2005, and April 25, 2006. A ladder was used
to access the canopy. Other trees and fence posts within
5 m of the aggregation trees were also inspected. The iden-
tity and location of each marked individual were recorded.

Treatment Effects within Laboratory Assays

To determine whether marked flies experience an elevated
mortality rate as a result of mechanical injury or paint
toxicity, we marked half of the individuals used in labo-
ratory assays A and B. Of the 40 groups in assay B, 20
groups contained 2 marked and 3 unmarked individuals,
and the other 20 groups contained 3 marked and 2 un-
marked individuals. We recorded mortality in marked and
unmarked individuals. Within the laboratory assays, we
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tested for effects of marking on life span using survival
analysis. We also tested for effects on life span of assay,
sex, and marking by factorial ANOVA. Life span data from
the laboratory assays were approximately normally dis-
tributed. We used survival analysis to test for an effect of
reproduction on male and female life spans in assay C
(same-sex groups vs. mixed-sex groups). Because our de-
sign was balanced, the number of groups (blocks) was
large, and the number of flies per block was small, we
omitted block effects from the analyses reported here. In-
clusion of block effects has no qualitative effect on the
results (not shown).

Aging Analysis

Daily mortality for laboratory and wild flies was modeled
as a linear term within an inverse logit function. The model
was fit to binomially distributed survival data using max-
imum likelihood techniques (Hilborn and Mangel 1997).
Because aging in the wild was studied using mark-recap-
ture techniques with animals of known age, we used clas-
sical mark-recapture models in which the probability c of
resighting of a live fly was estimated (Lebreton et al. 1992)
in addition to parameters describing mortality. We tested
for “actuarial” aging (senescence), defined as a continuous
increase with age in the probability of death (Carey 2001).
For non-sex-specific analysis, the Gompertz model and a
linear inverse logit model fit the data equally well (change
in Akaike Information Criterion ). A family[DAIC] p .05
of inverse logit models was used for subsequent analysis
because of the ease with which terms can be included and
the computational ease with which algorithms can fit max-
imum likelihood estimates. Given the inherent limitations
of demographic data from a wild population, the detection
of subtle differences between patterns of senescence at late
ages is beyond the scope of this study, making distinctions
between various aging models largely irrelevant. In fact,
traditional senescence models do not have robust mech-
anistic derivations (Abrams and Ludwig 1995). Our choice
of model was therefore utilitarian: our objectives were to
determine whether senescence occurs and to detect dif-
ferences in rates of senescence between flies inhabiting
different environments and between sexes. Models of mor-
tality for the wild flies included d, a parameter related to
the additional loss of flies through death or dispersal on
the day of release that is above and beyond the normal
mortality rate. Models were constructed using a forward/
backward stepwise approach with a focus on examining
sex-specific aging parameters within each lab assay and in
the wild. Subsequently, comparisons of parameter differ-
ences were made among lab assays and between lab assays
and the wild. We used AIC to compare models (Burnham
and Anderson 2002), and likelihood ratio tests yielded P

values for nested comparisons. Median and maximum life
spans were estimated from the best-fit model, with median
life span defined as the age by which 50% of the cohort
is dead and maximum life span defined as the age by which
99% of the cohort is dead (ignoring d, which is assumed
to reflect an artifact of the mark-release procedure).

Results

Life Span and Aging in the Wild

Estimates of aging and life span parameters derived from
the best-fit models for wild and captive flies are sum-
marized in table 1. For the wild flies, the best-fit model
included aging in males but no change in mortality rate
with age in females,

1
, d 1 1,

1 � exp (�a )fm (d) pf 1
, d p 1,{

[ ]1 � exp (� d � a )f
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where is the probability of daily mortality for sex i onm (d)i

day d, ai is the background mortality parameter for sex i,
bi is the aging rate (slope) for sex i, and d is the additional
death or dispersal parameter for the day of release. These
parameters are estimated in conjunction with an estimation
of the daily probability of resighting a live fly ( ).c p 0.22
On the day of release, the probability of a fly’s total dis-
appearance from the population was 1/ {1 � exp [� (a �

, which gives values of 0.60 for females and 0.40 ford)]}
males. Similarly, the daily probability of mortality at age
0, which is equivalent to the background or extrinsic mor-
tality rate after factoring out d, is , which1/ [1 � exp (�a)]
gives values of 0.23 for females and 0.12 for males. Thus,
the additional probability of death or dispersal immedi-
ately following release is the difference between these prob-
abilities, which gives values of 0.37 for females and 0.28
for males. Male-specific aging (bm) in the wild was strongly
supported in the best-fit model ( ) com-AIC p 2,043.4
pared with a model that did not include male aging
( ). However, the inclusion of a female agingAIC p 2,058.2
term (bf) in the model had little support (AIC p

) relative to the best-fit model with no female se-2,045.4
nescence ( ). Thus, aging was not detectedAIC p 2,043.4
in wild females.

Post hoc power analysis supported the conclusion that
aging rate is negligible in wild females. We used two ap-
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Figure 2: Proportion of the cohort alive as a function of age (days) for
marked and unmarked female and male flies in laboratory assays A and
B.

Table 1: Parameter estimates from best-fit models for wild and laboratory flies

Assay, sex a b d c Lmed Lmax

Wild:
Female �1.20 (.23) 0 1.6 (.37) .22 3 18
Male �2.00 (.12) .170 1.6 (.28) .22 4 10

Laboratory assay A:
Female �5.77 (.003) .051 … … 36 63
Male �6.88 (.001) .079 … … 37 56

Laboratory assay B:
Female �5.97 (.003) .041 … … 45 78
Male �5.97 (.003) .041 … … 45 78

Laboratory assay C:
Female �4.83 (.008) .047 … … 26 53
Male �4.07 (.017) .036 … … 21 49

Note: a p Background mortality parameter, with corresponding daily background mortality

in parentheses; b p rate of increase in mortality with age; d p additional death or dispersal

parameter for the wild population on the day of release, with corresponding death or dispersal

rate in parentheses; c p daily probability of resighting a live fly in the wild; Lmed p median

life span (days); Lmax p maximum life span (days), for females and males in the wild population

and each laboratory assay. Parameter values in bold represent common estimates for both

sexes within an assay.

proaches. First, we simulated data sets with an increased
value of bf but with all other parameters maintained at
their best-fit estimates. We found that, when bf becomes
large enough to be detected, overall mortality rate becomes
so high that all statistical power is lost. This suggests that,
given the high baseline mortality rate of wild females, we
have little information about their rate of aging. Second,
we investigated the possibility that the rate of background
mortality for females is inflated as a result of failure to
detect aging. We found that, if average life span is held
constant such that an increase in bf results in a concomitant
decrease in af, there is a 195% probability of detecting

. This detection threshold is paired withb 1 0.0268 a pf f

, representing a small decrease in daily background�1.31
mortality from 23% in the best fit model to 21% at the
power analysis threshold. The detection threshold for bf is
84% less than the best-fit estimate of bm. Both analyses
suggest that, in the wild, aging contributes much less to
overall mortality rate in females than in males.

Life Span and Aging in Captivity

We found no evidence of a consistent effect of marking
on life span in laboratory flies (fig. 2). In assay A, sur-
vival analysis showed a positive effect of marking on
life span in females ( , ; Cox-N p 51 N p 51unmarked marked

Mantel test: , ) but a neg-test statistic p �2.61 P p .009
ative effect in males ( , ; Cox-N p 55 N p 51unmarked marked

Mantel test: , ). In assay B,test statistic p 2.69 P p .007
we found no significant effect of marking on life span
in either females ( , ; Cox-N p 49 N p 49unmarked marked

Mantel test: , ) or in malestest statistic p 1.95 P p .052
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Figure 3: Proportion of the cohort alive as a function of age (days) for
female and male flies in same-sex (nonreproducing) and mixed-sex (re-
producing) groups in laboratory assay C.

Table 2: ANOVA for effects of assay, sex, and marking on life
span of Telostylinus angusticollis in the laboratory

Variable
Sum of
squares df

Mean
squares F P

Assay 15,247 1 15,247 38.512 !.001
Sex 4 1 4 .010 .919
Marking 341 1 341 .861 .354
Assay # sex 10 1 10 .025 .873
Assay # marking 1,266 1 1,266 3.199 .074
Sex # marking 330 1 330 .834 .362
Error 157,965 399 396 … …

Note: In assay A, flies were maintained individually; in assay B, flies were

maintained in same-sex groups.

( , ; Cox-Mantel test:N p 50 N p 51unmarked marked

, ). Likewise, ANOVA failed totest statistic p 0.56 P 1 .5
detect a significant effect of marking (table 2). We found
no effect of reproduction on life span in the laboratory
(assay C), either in females ( ,N p 196nonreproducing

; Cox-Mantel test: ,N p 193 test statistic p �0.01reproducing

) or in males ( ,P 1 .5 N p 198 N pnonreproducing reproducing

; Cox-Mantel test: , ; fig. 3).202 test statistic p �0.35 P 1 .5
Because neither marking nor reproduction had consistent
effects on life span, we omitted these factors from the aging
model for laboratory flies to maximize power to detect
effects of environment on aging.

The best-fit model for the laboratory flies was similar
to that for the wild flies, with the exclusion of d and c,

1
m (d) p , (2)i,j [ ]1 � exp (� a � b d )i,j i,j

where subscript i denotes the sex and subscript j denotes
the laboratory assay. Significant differences between the
sexes were found for senescence rates in laboratory assay
A (individual cages; , ) and labo-DAIC p 8.88 P ! .0001
ratory assay C (same-sex and mixed-sex groups;

, ). In laboratory assay B (same-sexDAIC p 4.94 P p .002
groups), however, the non-sex-specific model (AIC p

) was a better fit than a model with sex-specific10,006.0
senescence rates ( ). The aging rate forAIC p 10,009.9
males in assay A was greater than the male aging rate in
assay B ( ) and assay C ( ). Fe-DAIC p 23.2 DAIC p 35.74
male aging rate did not differ among laboratory assays.
Estimating female senescence rates across all assays as a
single parameter was a better model ( )AIC p 10,008.4
than using assay-specific senescence rates (AIC p

).10,009.0

Comparison of Wild and Captive Flies

For males, aging rate in the wild was greater than aging
rate in any of the laboratory assays ( ,DAIC ≥ 2.4 P ≤

; fig. 4). The estimated aging rate for wild males was.03
more than twice the estimated aging rate for laboratory
assay A and over fourfold higher than the estimates for
laboratory assays B and C. For females, there was no sig-
nificant difference between a model with a common se-
nescence rate for the wild study and assay A as compared
with a model with separate senescence rates for the wild
study and assay A ( ). The same is true for the wildP p .5
study and assay C ( ). However, in each case, al-P p .3
though not significantly different, the best-fit model was
the one in which the senescence rate of wild females was
set to zero and the senescence rate of laboratory females
was set to a positive value ( andDAIC p 1.7 DAIC p

, respectively). These results indicate a lack of power to1.4
detect senescence in wild females.

Survival (lx) curves for the wild flies and for each lab-
oratory assay are shown in figure 5. Median and maximum
life spans for flies of both sexes in the wild were far lower
than any of the estimates for the captive flies (table 1).

Discussion

We observed a striking contrast in life span and aging rate
between wild flies and a captive stock recently established
from the same wild population. Despite significant dif-
ferences among laboratory assays, all demographic esti-
mates for the laboratory flies were clustered together, in
contrast with those for the wild flies. In the wild, males
aged far more rapidly than their captive counterparts, but
wild females showed no significant change in mortality
rate with age. Wild flies of both sexes exhibited far higher
extrinsic (age-independent) mortality rates and much
shorter median and maximum life spans than did captive
flies. These results demonstrate the profound influence of
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Figure 4: Aging patterns in laboratory assays and the wild population. In the wild, males exhibited very rapid aging, whereas no aging was detected
in females. In laboratory assay A, males aged more rapidly than females did. In laboratory assay B, we detected no sex difference in aging rate. In
laboratory assay C, females and males likewise exhibited very similar (albeit significantly different) rates of aging. Hazard rate functions from all
laboratory assays and the wild population are plotted on common axes in the panel on the bottom right, illustrating the contrast between wild flies
and captive flies.

environment on aging rate and life span and suggest that
the findings of laboratory studies on short-lived organisms
like Drosophila melanogaster, Caenorhabditis elegans, and
mice may be strongly influenced by benign laboratory
conditions.

Our design relied on the use of an individual marking
technique and we found no consistent evidence for effects
of marking on mortality via mechanical damage or paint

toxicity. Our experiment does not exclude the possibility
that marking increases predation risk in the wild because
marked flies may be more conspicuous to visually oriented
predators such as birds. Marking could thus inflate esti-
mates of age-independent (background) mortality rate and
perhaps affect estimates of aging rate, although it could
not create an artifactual aging pattern because the added
visibility is age independent. However, in our population,
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Figure 5: Proportion of the cohort alive as a function of age (days) for
female and male flies in the wild population and in the laboratory assays.
Curves are based on mortality rates estimated from the best-fit models
(not including d, which is assumed to represent an artifact of the mark-
release procedure). Thin solid lines represent wild flies (black line, females;
gray line, males). Thick solid lines represent lab assay A (black line, fe-
males; gray line, males). Thick dashed line represents lab assay B (both
sexes). Dotted lines represent lab assay C (black line, females; gray line,
males).

the effect of marking on mortality is likely to be minor
because the dominant predators of these flies are small
skinks (Eulamprus tenuis) that approach their prey with
their bellies pressed to the bark (N. Kawasaki and R. Bon-
duriansky, unpublished data) and thus typically see Telo-
stylinus angusticollis individuals (which have extremely
long legs) from below or from the side. We observed nu-
merous successful and unsuccessful predation attempts by
these skinks but never observed predation attempts by
birds (N. Kawasaki and R. Bonduriansky, unpublished
data). In addition to added mortality, the initial disori-
entation and stress associated with marking and release
could render flies temporarily more vulnerable to preda-
tion and other hazards. Such an effect is one possible cause
of the substantial rate of disappearance of marked indi-
viduals from the population on the day of release, ac-
counted for in our models by a separate parameter (d).

As in any mark-release-resight study, individuals dis-
appearing from the population are assumed to have died,
but it is usually impossible to exclude the possibility of
migration from the study site. However, migration from
the study site is unlikely in our population for several
reasons. First, we studied an isolated population within a
small (∼1 ha) urban park surrounded by built-up areas.
The nearest T. angusticollis population outside this park is
∼1.5 km away (R. Bonduriansky, unpublished data). Sec-
ond, the rate of migration between locations within the
study site was very low: ∼1% of marked individuals (5

females and 4 males) migrated between the two release
sites (∼70 m apart), and ∼2% of individuals (13 females
and 3 males) migrated between a major aggregation tree
and other trees or to a fence ∼10 m away. Thus, immi-
gration probably contributed very little to the disappear-
ance of marked individuals from our study population.
Moreover, migration rates between the two release sites
were similar for males and females, so it is unlikely that
differential migration rates contributed to observed sex
differences in life span and aging rate of wild flies.

The far more risky and stressful environment encoun-
tered by wild flies clearly accounts for the much higher
background mortality rate observed in the wild. But how
can we account for the difference in aging rate (i.e., rate
of increase in mortality rate with age) between males in
the wild and those in the laboratory? Two nonexclusive
processes could contribute to this difference. First, somatic
deterioration may proceed at the same rate in wild flies
and captive flies, but the harsh environment experienced
by wild males may impose intense selection on somatic
condition and, thus, expose the somatic effects of aging
to a greater extent in wild flies. Wild males must avoid
predators and deal with temperature changes and inclem-
ent weather while competing for mates. A slight decline
in somatic condition may therefore result in a far greater
increase in the risk of death in the wild than in the shel-
tered, benign laboratory environment. Second, somatic de-
terioration may actually proceed more rapidly in the harsh
environment experienced by wild flies. For example, stress
associated with changing temperature, unstable food sup-
ply, parasites, and the vigorous physical activity involved
in predator avoidance and sexual competition could result
in rapid accumulation of somatic damage and cause ac-
celerated aging in individuals in the wild compared with
individuals in the laboratory.

Curiously, we were unable to detect a significant increase
in mortality rate with age in wild females. This apparent
difference between the sexes is likely to reflect contrasting
reproductive strategies (see Vinogradov 1998; Bondurian-
sky et al. 2008) and, in particular, stronger condition de-
pendence of mortality risk in males than in females. Wild
males spend much of their time walking through aggre-
gation sites on tree trunks, fighting rivals, and attempting
to copulate with females (see Bonduriansky 2006, 2007).
Several predatory skinks (E. tenuis) were typically seen
hunting for T. angusticollis on each tree where flies aggre-
gated (N. Kawasaki and R. Bonduriansky, unpublished
data). These visual predators may target males dispro-
portionately because their greater activity makes them
more visible. Similarly, male-male combat may contribute
to the accumulation of somatic damage (see Bonduriansky
and Brassil 2005). Both factors may strengthen the con-
dition dependence and age dependence of mortality risk
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(as well as our power to detect aging) in males relative to
females, who spend much of their time sitting nearly mo-
tionless while lapping up resin near damaged areas of tree
trunks (N. Kawasaki and R. Bonduriansky, unpublished
data). Although we suspect that we would have detected
aging in wild females given a sufficiently large sample size,
our results and power analysis suggest that aging is of
relatively little importance for wild females at the popu-
lation level because age-independent mortality over-
whelms the signal of age dependence in mortality rate.
This null result thus suggests an interesting biological dif-
ference between the sexes that calls for further investiga-
tion. Females also exhibited slower aging and longer me-
dian life spans than males in two of the three laboratory
assays.

Our findings suggest that a consideration of environ-
mental effects can reconcile apparently contradictory pre-
dictions and observations from the literature regarding
aging in wild populations. Life-history theory predicts that
animals who are subject to high extrinsic mortality rates
will evolve rapid aging rates (Williams 1957; Hamilton
1966; Kirkwood and Rose 1991). However, many geron-
tologists have argued that aging will be difficult or im-
possible to detect in short-lived animals in the wild because
very few individuals survive to old age and advanced se-
nescence (Comfort 1979; Hayflick 2000; Kirkwood and
Austad 2000). This reasoning is based on the implicit as-
sumption that mortality rate increases at the same rate in
wild populations as in captive ones. For example, if the
maximum observed life span in a wild insect population
is 20 days, it is assumed (on the basis of observations of
20-day-old captive animals) that the increase in mortality
rate with age in the oldest age class observed in the wild
will be negligible. Our findings suggest, however, that
whether aging can be detected in a wild cohort of rea-
sonable size may depend on the balance between condi-
tion-independent extrinsic mortality, which tends to ob-
scure aging by eliminating older individuals, and the
tendency for environmental factors to expose or accelerate
somatic deterioration, which will strengthen the signal of
aging. The expectation that aging will be undetectable as
a result of high extrinsic, condition-independent mortality
agrees with our results for wild T. angusticollis females,
whereas the prediction of rapid aging is supported by our
findings for wild males.

A consideration of the role of environment may also
reconcile direct evidence of rapid aging in wild insects (this
study; Bonduriansky and Brassil 2002) with evidence from
common-garden experiments with D. melanogaster and
mice indicating that lines recently derived from wild pop-
ulations possess the genetic capacity for relatively slow
aging and long potential life spans compared with labo-
ratory-adapted lines (Sgrò and Partridge 2000; Linnen et

al. 2001; Miller et al. 2002). Strong selection on condition
in wild populations may favor genes with pleiotropic ef-
fects that result in relatively slow aging rates and long life
spans under benign laboratory conditions (Abrams 1993;
Linnen et al. 2001; Williams and Day 2003; Reznick et al.
2004; Bronikowski and Promisiow 2005). However, our
results suggest that the harsh environment experienced by
wild populations may strengthen the age dependence of
mortality rate and greatly reduce life expectancy, and that
such effects may be large enough to negate the genetic
potential for slow aging and long life in wild-adapted or-
ganisms. A combination of approaches may therefore be
required. Inferences about age-dependent traits or fitness
components rely on assumptions about life expectancy and
aging rate in natural environments, necessitating direct
estimates of these parameters in wild populations. Em-
pirical evidence suggests that wild animals suffer higher
mortality rates and, sometimes, more rapid aging than
their captive counterparts do (this study; Ricklefs 2000;
Bonduriansky and Brassil 2002; Bronikowski et al. 2002),
that mortality rates and aging rates can covary with phe-
notypic traits such as body size (Bonduriansky and Brassil
2005) and differ between the sexes (this study), and that
different components of performance may decline at dif-
ferent rates (Reznick et al. 2004). However, common-
garden experiments (Sgrò and Partridge 2000; Linnen et
al. 2001; Miller et al. 2002; Reznick et al. 2004) can expose
genetic differences in potential aging rate and life span and
can shed light on the evolution of life-history strategies
under contrasting selection.

Although they are smaller than the contrasts between
the wild population and the laboratory populations, dif-
ferences between laboratory assays were substantial; the
causes of this variation, however, are unclear. Assays A and
B were performed simultaneously, albeit using different-
sized cages (75 mL in assay A vs. 250 mL in assay B),
whereas assay C was performed later. Thus, both housing
conditions and random temporal variation in ambient
temperature, humidity, and diet may have contributed to
variation in life expectancy among assays. Like the differ-
ence between wild and captive flies, the variation among
laboratory assays reflects the sensitivities of aging and life
span to environmental conditions. Interestingly, we failed
to detect any survival cost of reproduction in assay C, a
result that appears to run counter to the expectation that
reproductive activity accelerates aging and reduces life span
through both latent and immediate costs (Ernsting and
Isaaks 1991; Kirkwood and Rose 1991; Tatar et al. 1993;
Kotiaho 2001). However, the costs of reproduction may
be low and difficult to detect in the benign and resource-
rich laboratory environment (Harshman and Hoffmann
2000; Lindstrom 2001; Marden et al. 2003; Messina and
Fry 2003; Barbraud and Weimerskirch 2005) and were
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perhaps countered to a substantial degree by as yet un-
known costs of virginity (Carey et al. 2002). The presence
of the oviposition medium in the mixed-sex treatment
only may also have enhanced the longevity of reproducing
flies in assay C.

Three previous studies have reported direct compari-
sons of aging rate and life span in the wild and in labo-
ratory environments. A study on the perennial plant Plan-
tago lanceolata reported a more rapid increase in mortality
rate with age in the wild than in a greenhouse (Roach
2001). In contrast, an analysis of data on 28 species of
birds showed much higher background mortality rates in
the wild but little evidence of a difference in aging rate
between wild and captive populations (Ricklefs 2000).
Similarly, in baboons, a demographic comparison of two
wild populations with a captive population reported a sub-
stantially higher background mortality rate in one wild
population but similar mortality rates in the other wild
and captive populations, and little difference between the
three populations in aging rates (Bronikowski et al. 2002).
Because the studies on birds and baboons could not con-
trol for genetic factors, it is unclear to what extent the
observed interpopulation variation reflects environmental
factors versus genetic factors. Moreover, the study on ba-
boons compared demographic parameters for females
only. More studies of this kind (ideally, comparing de-
mographic parameters of genetically similar cohorts in
contrasting environments) are needed to illuminate vari-
ation between sexes and taxa in the effects of environment
on life span and aging.

Several previous studies have reported mean or median
life spans for wild insects (Fincke 1982, 1986; McCauley
1983; Banks and Thompson 1985; Hafernik and Garrison
1986; Elgar and Pierce 1988; Bonduriansky and Brassil
2002). These estimates—for several damselfly species, a
milkweed beetle, and a piophilid fly—range from 2 to 16
days. To our knowledge, only one previous study formally
tested for aging in a wild insect population: Bonduriansky
and Brassil (2002) observed a rapid increase in mortality
rate and a decrease in reproductive rate with age, similar
to our study’s results for male T. angusticollis. The study
of aging and life span in wild populations (particularly in
small animals) presents considerable technical challenges.
The strong plasticity of aging rate and life span presents
the additional challenge of accounting for temporal and
spatial variation in environmental effects on the expression
of these traits.

This study provides direct evidence that environmental
effects on the expression of life span and aging result in
large differences between wild and captive animals and
that these environmental effects are sex specific (i.e., wild
males age much more rapidly than do captive males, but
no such pattern is evident in females). These findings point

to the possibility that many laboratory comparisons of net
fitness or components of fitness may be substantially off
the mark. For example, many laboratory studies have re-
ported sex differences in life span or aging, but our find-
ings suggest that a comparison of the sexes in the wild (or
even under altered conditions in the laboratory) could
yield qualitatively different results. We suggest that the
same problem could potentially confound within-sex com-
parisons of net fitness or fitness components for different
genotypes, phenotypes, age classes, species, and so forth;
if these subjects are also affected differently by environ-
mental factors, then laboratory populations and wild pop-
ulations could yield qualitatively different patterns. Such
effects may thus complicate the interpretation of a wide
range of laboratory studies, including those that compare
fitness components such as early-life and late-life perfor-
mance (e.g., Carey et al. 2002; Hunt et al. 2004) or direct
and indirect selection on mating preferences (e.g., Hosken
and Tregenza 2005), those that relate fitness to genetic or
phenotypic variation (e.g., Arnqvist and Nilsson 2000),
and those that compare fitness components between sexes
(e.g., Chippindale et al. 2001; Ballard et al. 2007). Our
findings underscore the importance of investigating life
span and aging in the wild as well as under a range of
laboratory conditions.
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